f(x)=x-ln(2x+2)
Er ikke helt sikker på hva jeg gjør med 2x+2?
Derivere ln uttrykk
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
-
- Fibonacci
- Posts: 5648
- Joined: 24/05-2009 14:16
- Location: NTNU
jeg kan ta oppgaven raskt =)
[tex]f(x) = x - \ln \left( 2 x+ 2x \right)[/tex]
[tex]f^{\tiny\prime}(x) = 1 - \left( \left( 2 x+ 2x \right) \right)^{\tiny\prime}[/tex]
[tex]\left( f(g(x)) \right)^{\tiny\prime} = f^{\tiny\prime}(g(x)) \cdot g^{\tiny\prime}(x)[/tex]
[tex]f (g (x) ) = \ln \left( g(x) \, \, \right) \qquad , \qquad f^{\tiny\prime} (\, g (x) \,)=\frac{1}{g(x)}[/tex]
[tex]g (x) = 2x + 2 \qquad , \qquad g^{\tiny\prime} =2[/tex]
[tex]\left( f(g(x)) \right)^{\tiny\prime} = \frac{1}{g(x)} \cdot g^{\tiny\prime}(x)[/tex]
[tex]\left( f(g(x)) \right)^{\tiny\prime} = \frac{1}{2x+2} \cdot 2[/tex]
[tex]f^{\tiny\prime}(x) = 1 - \frac{2}{2x+2}[/tex]
[tex]f^{\tiny\prime}(x) = \frac{x+1}{x+1} - \frac{1}{x+1}[/tex]
[tex]f^{\tiny\prime}(x) = \frac{x}{x+1} [/tex]
Alternativt kan vi ta en frekkis i begynnelsen og skrive
[tex]f(x) = x - \ln \left( 2 x+ 2x \right) = x - \left( \ln ( x + 1 ) + \ln 2\right) [/tex]
[tex]f^{\tiny\prime}(x) = 1 - \frac{\left( x + 1\right)^{\tiny\prime }}{x+1}[/tex]
[tex]f^{\tiny\prime}(x) = \frac{x+1}{x+1} - \frac{ 1}{x+1}[/tex]
[tex]f^{\tiny\prime}(x) = \frac{ x }{x+1}[/tex]
[tex]f(x) = x - \ln \left( 2 x+ 2x \right)[/tex]
[tex]f^{\tiny\prime}(x) = 1 - \left( \left( 2 x+ 2x \right) \right)^{\tiny\prime}[/tex]
[tex]\left( f(g(x)) \right)^{\tiny\prime} = f^{\tiny\prime}(g(x)) \cdot g^{\tiny\prime}(x)[/tex]
[tex]f (g (x) ) = \ln \left( g(x) \, \, \right) \qquad , \qquad f^{\tiny\prime} (\, g (x) \,)=\frac{1}{g(x)}[/tex]
[tex]g (x) = 2x + 2 \qquad , \qquad g^{\tiny\prime} =2[/tex]
[tex]\left( f(g(x)) \right)^{\tiny\prime} = \frac{1}{g(x)} \cdot g^{\tiny\prime}(x)[/tex]
[tex]\left( f(g(x)) \right)^{\tiny\prime} = \frac{1}{2x+2} \cdot 2[/tex]
[tex]f^{\tiny\prime}(x) = 1 - \frac{2}{2x+2}[/tex]
[tex]f^{\tiny\prime}(x) = \frac{x+1}{x+1} - \frac{1}{x+1}[/tex]
[tex]f^{\tiny\prime}(x) = \frac{x}{x+1} [/tex]
Alternativt kan vi ta en frekkis i begynnelsen og skrive
[tex]f(x) = x - \ln \left( 2 x+ 2x \right) = x - \left( \ln ( x + 1 ) + \ln 2\right) [/tex]
[tex]f^{\tiny\prime}(x) = 1 - \frac{\left( x + 1\right)^{\tiny\prime }}{x+1}[/tex]
[tex]f^{\tiny\prime}(x) = \frac{x+1}{x+1} - \frac{ 1}{x+1}[/tex]
[tex]f^{\tiny\prime}(x) = \frac{ x }{x+1}[/tex]
"Å vite hva man ikke vet er og en slags allvitenhet" - Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk