Hei
[tex]2xy^,+y =1 [/tex] der y<1
[tex]2xy^,= 1-y [/tex]
[tex]\frac{2}{1-y}*y^,= \frac{1}{x}[/tex]
[symbol:integral][tex]\frac{2}{1-y}dy[/tex] = [symbol:integral][tex]\frac{1}{x}dx[/tex]
[tex]2ln |1-y| = ln x +c1[/tex]
[tex]e^{2ln|1-y|} = e^{lnx}*e^{c1}[/tex]
[tex]|1-y|^2 = x*C[/tex]
[tex]1-y^2 = xC[/tex]
[tex]y^2 = 1-xC[/tex]
[tex]y = sqrt{1- xC}[/tex]
Svaret skal bli
[tex]y = 1- \frac{1}{sqrt{x}}*C[/tex]
Hvor er feilen min?
Differensiallikninger
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
Tar det fra starten, siden jeg har litt vanskeligheter med å sette meg helt inn i utregninga.
[tex]2xy^, + y = 1[/tex]
[tex]\frac{2y^,}{1-y} = \frac{1}{x}[/tex]
[tex]\int \frac{2y^,}{1-y}dy = \int \frac{1}{x}dx[/tex]
[tex]-2\ln (y-1) = \ln x + C_1[/tex]
[tex]y = \frac{e^{-\frac{-C_1}{2}}}{\sqrt x}[/tex]
Forenkler:
[tex]y = \frac{C}{\sqrt x} + 1[/tex]
Jeg ser nå at jeg påpekte feil ista. Du har jo rota bort y' mellom linje 3 og 4.
[tex]2xy^, + y = 1[/tex]
[tex]\frac{2y^,}{1-y} = \frac{1}{x}[/tex]
[tex]\int \frac{2y^,}{1-y}dy = \int \frac{1}{x}dx[/tex]
[tex]-2\ln (y-1) = \ln x + C_1[/tex]
[tex]y = \frac{e^{-\frac{-C_1}{2}}}{\sqrt x}[/tex]
Forenkler:
[tex]y = \frac{C}{\sqrt x} + 1[/tex]
Jeg ser nå at jeg påpekte feil ista. Du har jo rota bort y' mellom linje 3 og 4.
