Vektor spørsmål, vektor areal

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
morti
Dirichlet
Dirichlet
Posts: 192
Joined: 19/08-2008 14:45

[tex]F=1/2|a×b|=1/2(a×b)^2[/tex]

er dette korrekt å skrive?
yo
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Nei. Det er forskjell på [tex]|\vec{u}|^2[/tex] og [tex]\vec{u}^2 = \vec{u} \cdot \vec{u} = |\vec{u}|^2[/tex] (så lenge lengden er forskjellig fra 0 eller 1). Det du kan si er at [tex]F = \frac{1}{2}\sqrt{(\vec{a} \times \vec{b})^2}[/tex].
Elektronikk @ NTNU | nesizer
morti
Dirichlet
Dirichlet
Posts: 192
Joined: 19/08-2008 14:45

Vektormannen wrote:Nei. Det er forskjell på [tex]|\vec{u}|^2[/tex] og [tex]\vec{u}^2 = \vec{u} \cdot \vec{u} = |\vec{u}|^2[/tex] (så lenge lengden er forskjellig fra 0 eller 1). Det du kan si er at [tex]F = \frac{1}{2}\sqrt{(\vec{a} \times \vec{b})^2}[/tex].
så bare på fasiten her http://matematikk.net/matteprat/viewtopic.php?t=33942
oppgave 3c hvis du blar litt ned på siden, men han tar jo forøvrig kvadratrot senere, men...
yo
mikki155
von Neumann
von Neumann
Posts: 549
Joined: 05/02-2011 12:36
Location: Trondheim

Du har alltid nødt til å spesifisere hvilken oppgave du holder på med. I akkurat den fant du jo et bevis for sammenhengen mellom vektorproduktet og skalarproduktet, og da må du forklare det når du skal stille spørsmål.
Fysikk og matematikk (MTFYMA, Sivilingeniør/Master 5-årig) ved NTNU
morti
Dirichlet
Dirichlet
Posts: 192
Joined: 19/08-2008 14:45

mikki155 wrote:Du har alltid nødt til å spesifisere hvilken oppgave du holder på med. I akkurat den fant du jo et bevis for sammenhengen mellom vektorproduktet og skalarproduktet, og da må du forklare det når du skal stille spørsmål.
Også lurer jeg på noe annet med vektor, når man f.eks, får kryssproduktet [14,14,7] burde man alltid skrive det 7[2,2,1] eller kan man få feil hvis man da bruker [2,2,1] i en oppgave man på bruke kryss produktet?
yo
mikki155
von Neumann
von Neumann
Posts: 549
Joined: 05/02-2011 12:36
Location: Trondheim

Fysikk og matematikk (MTFYMA, Sivilingeniør/Master 5-årig) ved NTNU
morti
Dirichlet
Dirichlet
Posts: 192
Joined: 19/08-2008 14:45

mikki155 wrote:Sjekk denne tråden: http://matematikk.net/matteprat/viewtop ... 13&t=35079
så ja det er det samme? :P
yo
mikki155
von Neumann
von Neumann
Posts: 549
Joined: 05/02-2011 12:36
Location: Trondheim

Skal du lage likning for planet, så faktoriser vektorproduktet så mye som mulig, ja. Som jeg nevnte i posten:

"Det at de delte på 7 i vektorproduktet, var for å skrive normalvektoren så enkelt som mulig. Du er vel enig i at [14, 14, 7] er parallell med [2, 2, 1] ? Da vil jo også sistnevnte vektor være en normalvektor for planet som [tex]\vec{a}[/tex] og [tex]\vec{b}[/tex] utspenner. Grunnen til at de har delt på felles faktor er rett og slett for å skrive det så enkelt som mulig. Stigningstallet er likevel likt."
Fysikk og matematikk (MTFYMA, Sivilingeniør/Master 5-årig) ved NTNU
morti
Dirichlet
Dirichlet
Posts: 192
Joined: 19/08-2008 14:45

mikki155 wrote:Skal du lage likning for planet, så faktoriser vektorproduktet så mye som mulig, ja. Som jeg nevnte i posten:

"Det at de delte på 7 i vektorproduktet, var for å skrive normalvektoren så enkelt som mulig. Du er vel enig i at [14, 14, 7] er parallell med [2, 2, 1] ? Da vil jo også sistnevnte vektor være en normalvektor for planet som [tex]\vec{a}[/tex] og [tex]\vec{b}[/tex] utspenner. Grunnen til at de har delt på felles faktor er rett og slett for å skrive det så enkelt som mulig. Stigningstallet er likevel likt."
var en oppgave der jeg skulle finne volumet av en pyramide, kan jeg da bruke kryssproduktet forkortet eller ikke? så i fasiten at de hadde med 7'ern
yo
fuglagutt
Fermat
Fermat
Posts: 779
Joined: 01/11-2010 12:30

Da kan du ikke bruke den forkortet, nei.
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Da kan du ikke forkorte.

Grunnen til at du kan forkorte når du skal lage planligningen er at ligningene [tex]kax + kbx + kcx + kd = 0[/tex] og [tex]ax + bx + cx + d = 0[/tex] beskriver akkurat samme plan (vi kan dele med k på begge sider i den første for å få den andre). La oss si at vi har en normalvektor på formen [tex][ka, kb, kc][/tex]. Hvis vi bruker denne får vi en planligning på den første formen. Så kan vi forkorte den ligningen og få den andre ligningen. Alternativet er å først forkorte, altså at vi tar vektoren [tex][a,b,c][/tex] i stedet, og så lage ligningen. I begge tilfeller ender vi opp med samme ligning.
Elektronikk @ NTNU | nesizer
morti
Dirichlet
Dirichlet
Posts: 192
Joined: 19/08-2008 14:45

Vektormannen wrote:Da kan du ikke forkorte.

Grunnen til at du kan forkorte når du skal lage planligningen er at ligningene [tex]kax + kbx + kcx + kd = 0[/tex] og [tex]ax + bx + cx + d = 0[/tex] beskriver akkurat samme plan (vi kan dele med k på begge sider i den første for å få den andre). La oss si at vi har en normalvektor på formen [tex][ka, kb, kc][/tex]. Hvis vi bruker denne får vi en planligning på den første formen. Så kan vi forkorte den ligningen og få den andre ligningen. Alternativet er å først forkorte, altså at vi tar vektoren [tex][a,b,c][/tex] i stedet, og så lage ligningen. I begge tilfeller ender vi opp med samme ligning.
Men jeg får vel ikke feil hvis jeg dropper å forkorte den på eksamen? så slipper jeg hele problemstillingen
yo
fuglagutt
Fermat
Fermat
Posts: 779
Joined: 01/11-2010 12:30

Du kan godt droppe det i mellomregninger, men dersom du skal gi svar som vektorer vil det se bedre ut om du forkorter dem. Det blir mye av det samme som å forkorte brøker.

Vær dog nøye på at det vil være riktig å forkorte dem. Er du tvil; Ikke forkort :)
Post Reply