Eksponentiallikninger

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
jawwadakun
Fibonacci
Fibonacci
Posts: 4
Joined: 05/09-2017 19:30

Hvordan finner jeg eventuelle toppunkter- og bunnpunkter ved regning?
[tex]f(x)=e^x -e^(2x)[/tex]
Last edited by jawwadakun on 05/09-2017 19:34, edited 1 time in total.
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Hva er den deriverte av funksjonen?
Image
jawwadakun
Fibonacci
Fibonacci
Posts: 4
Joined: 05/09-2017 19:30

Aleks855 wrote:Hva er den deriverte av funksjonen?
[tex]f'(x) = e^x - 2e^(2x)[/tex]
tror jeg er den deriverte.
Klarer ikke å opphøye 2x i denne tex-editoren, men håper du forstår. :D
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Ja, det går fint :)

Hva vet vi om den deriverte og topp/bunnpunkter?
Image
jawwadakun
Fibonacci
Fibonacci
Posts: 4
Joined: 05/09-2017 19:30

Aleks855 wrote:Ja, det går fint :)

Hva vet vi om den deriverte og topp/bunnpunkter?
Når den deriverte av funksjonen er lik 0, har vi enten et topp- eller bunnpunkt. Forresten, tror jeg klarte å løse den. Jeg satte e^x utenfor funksjonen, og da får jeg [tex](1-2e^x)*e^x[/tex] . Jeg setter det lik 0, og vet at e^x = 0 går ikke, da jobber jeg bare med det som er inni parentesen. Og svaret jeg kom fram til er 1/2 = e^x -> x = ln(1/2) - > x = -0.69.
Det jeg skrev ble kanskje litt rotete, men kunne du ha hjulpet meg med å si om det er rett eller galt?
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Du er på helt riktig spor.

Som du har kommet frem til, så har funksjonen et ekstremalpunkt der $x = \log\left(\frac12\right)$. Jeg ville skrevet dette som log(1/2) først, og heller gjort avrundingen etterpå. Det er log(1/2) som er den eksakte verdien. -0.69 er en tilnærming, og bør komme i tillegg til det eksakte svaret.

Det som gjenstår nå er to ting; du er ute etter punkter, og ikke bare en $x$-verdi. Et punkt er på formen $(x, f(x))$ så du må sette dette sammen.

I tillegg må du avgjøre om punktet er et toppunkt eller bunnpunkt.
Image
jawwadakun
Fibonacci
Fibonacci
Posts: 4
Joined: 05/09-2017 19:30

Aleks855 wrote:Du er på helt riktig spor.

Som du har kommet frem til, så har funksjonen et ekstremalpunkt der $x = \log\left(\frac12\right)$. Jeg ville skrevet dette som log(1/2) først, og heller gjort avrundingen etterpå. Det er log(1/2) som er den eksakte verdien. -0.69 er en tilnærming, og bør komme i tillegg til det eksakte svaret.

Det som gjenstår nå er to ting; du er ute etter punkter, og ikke bare en $x$-verdi. Et punkt er på formen $(x, f(x))$ så du må sette dette sammen.

I tillegg må du avgjøre om punktet er et toppunkt eller bunnpunkt.
Åjaaaaa, det har du helt rett i. Jeg vet hvordan jeg skal lage fortegnslinjer, men hvordan skal jeg tolke (1-2e^(x))*e^x i et fortegnsskjema? Hvordan vet jeg når grafen stiger eller synker utifra det der?
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Vi har flere måter å se på dette på.

Et eksempel kan være å finne den dobbelderiverte av funksjonen. Hvis denne er positiv, så vil funksjonen ha en slags "smilemunn", som betyr at vi har et bunnpunkt. Hvis negativ, "surmunn" som har toppunkt.

En annen måte kan være å se på et par punkter ved siden av det du er ute etter. Vi vet at $f(\log(1/2))$ er et ekstremalpunkt. Hvis $f(\log(1/2) + 0.1) > f(\log(1/2)$ så må ekstremalpunktet være et bunnpunkt, fordi et av punktene i nærheten er større. Tilsvarende, men omvendt, test kan gjøres for å vise at punktet er toppunkt.
Image
DennisChristensen
Grothendieck
Grothendieck
Posts: 826
Joined: 09/02-2015 23:28
Location: Oslo

Merk deg for øvrig at vi kan skrive $\log\left(\frac12\right) = \log 1 - \log 2 = 0 - \log 2 = -\log 2.$
Post Reply