Dobbeltintegral variabelskifte

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Svar
Anonymbruker555

https://imgur.com/a/2lzDlYF

Hvordan kommer man frem til riktig variabelbytte her. Har prøvd å sette u = x og v = 4x^2 + y^2 der 1/2≤u≤2 og 1≤v≤16. Men dette blir ikke enkelt når jeg skal til å regne ut Jacobideterminanten. Noen som har forslag til variabelskifte og hvordan man skal komme frem til dette?
Neon
Cantor
Cantor
Innlegg: 116
Registrert: 11/05-2016 19:11

Hvorfor ikke bare bruke polar koordinater?
reneask
Cayley
Cayley
Innlegg: 85
Registrert: 03/01-2018 18:00

Anonymbruker555 skrev:https://imgur.com/a/2lzDlYF

Hvordan kommer man frem til riktig variabelbytte her. Har prøvd å sette u = x og v = 4x^2 + y^2 der 1/2≤u≤2 og 1≤v≤16. Men dette blir ikke enkelt når jeg skal til å regne ut Jacobideterminanten. Noen som har forslag til variabelskifte og hvordan man skal komme frem til dette?

Du kan bruke elliptiske koordinater for å løse problemet.

I problemet er det ganske opplagt at

$$
0 \leq \theta \leq \frac{\pi}{2}
$$

For elliptiske koordinater gjelder

$$
x = x_0 + ar\cos\theta \qquad \text{og} \qquad y =y_0 + br\sin\theta
$$

som korresponderer med det generelle uttrykket for en ellipse:

$$
\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1
$$

der vi har at

$$
0 \leq r \leq 1
$$

Prøv å bruk dette til å løse problemstillingen din.

En annen måte hadde vært å brukt Greens teorem og løse det hele som et linjeintegral om en lukket kurve (men det er trolig lite tyngre regning)
An555

reneask skrev:
Anonymbruker555 skrev:https://imgur.com/a/2lzDlYF

Hvordan kommer man frem til riktig variabelbytte her. Har prøvd å sette u = x og v = 4x^2 + y^2 der 1/2≤u≤2 og 1≤v≤16. Men dette blir ikke enkelt når jeg skal til å regne ut Jacobideterminanten. Noen som har forslag til variabelskifte og hvordan man skal komme frem til dette?

Du kan bruke elliptiske koordinater for å løse problemet.

I problemet er det ganske opplagt at

$$
0 \leq \theta \leq \frac{\pi}{2}
$$

For elliptiske koordinater gjelder

$$
x = x_0 + ar\cos\theta \qquad \text{og} \qquad y =y_0 + br\sin\theta
$$

som korresponderer med det generelle uttrykket for en ellipse:

$$
\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1
$$

der vi har at

$$
0 \leq r \leq 1
$$

Prøv å bruk dette til å løse problemstillingen din.

En annen måte hadde vært å brukt Greens teorem og løse det hele som et linjeintegral om en lukket kurve (men det er trolig lite tyngre regning)
Skjønte ikke dette helt, skal jeg benytte meg av elliptiske koordinater (r, θ, ϕ) (Det er vell strengt tatt et areal jeg skal finne)? Er du sikker på at r går fra 0 til 1? Skal jeg sette opp to integraler, det ene til den lille ellipsen og den andre til den store (Så trekker jeg resultatet av hver av dem fra hverandre?) Tusen takk for svar!
reneask
Cayley
Cayley
Innlegg: 85
Registrert: 03/01-2018 18:00

An555 skrev:
reneask skrev:
Anonymbruker555 skrev:https://imgur.com/a/2lzDlYF

Hvordan kommer man frem til riktig variabelbytte her. Har prøvd å sette u = x og v = 4x^2 + y^2 der 1/2≤u≤2 og 1≤v≤16. Men dette blir ikke enkelt når jeg skal til å regne ut Jacobideterminanten. Noen som har forslag til variabelskifte og hvordan man skal komme frem til dette?

Du kan bruke elliptiske koordinater for å løse problemet.

I problemet er det ganske opplagt at

$$
0 \leq \theta \leq \frac{\pi}{2}
$$

For elliptiske koordinater gjelder

$$
x = x_0 + ar\cos\theta \qquad \text{og} \qquad y =y_0 + br\sin\theta
$$

som korresponderer med det generelle uttrykket for en ellipse:

$$
\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1
$$

der vi har at

$$
0 \leq r \leq 1
$$

Prøv å bruk dette til å løse problemstillingen din.

En annen måte hadde vært å brukt Greens teorem og løse det hele som et linjeintegral om en lukket kurve (men det er trolig lite tyngre regning)
Skjønte ikke dette helt, skal jeg benytte meg av elliptiske koordinater (r, θ, ϕ) (Det er vell strengt tatt et areal jeg skal finne)? Er du sikker på at r går fra 0 til 1? Skal jeg sette opp to integraler, det ene til den lille ellipsen og den andre til den store (Så trekker jeg resultatet av hver av dem fra hverandre?) Tusen takk for svar!
Her er en mulig løsning.

Merk først at du ikke skal finne arealet, du skal integrere en oppgitt funksjon over området. Du kan tolke dette som at du regner ut volumet under flaten z = f(x,y) som ligger over området i xy-planet.

Løsningsforslag:

La oss først se på den første ellipsen. Den kan omformes til følgende uttrykk:

$$
\frac{x^2}{2^2} + \frac{y^2}{4^2} = 1
$$

Da innfører vi variablene

$$
x = 2r\cos \theta \qquad \text{og} \qquad y = 4r\sin \theta
$$

Man kan enkelt regne ut jakobideterminanten og finne at

$$
J_1 = abr = 2\cdot4 r = 8 r
$$

Med dette kan vi integrerer funksjonen over den store ellipsen. Siden vi er interessert i å integrere funksjonen i området som er mellom to ellipser, blir vi nødt til å innføre variabler for den mindre ellipsen og deretter ta integralet av over den store ellipsen og trekke fra integralet over den lille ellipsen.

Uttrykket for den lille ellipsen kan omskrives til

$$
\frac{x^2}{(1/2)^2} + \frac{y^2}{1^2} = 1
$$

her innfører vi variablene

$$
x = \frac{1}{2}r\cos \theta \qquad \text{og} \qquad y = 1r\sin \theta
$$

Her blir jakobideterminanten

$$
J_2 = \frac{1}{2}r
$$

Vinkelen ligger mellom 0 og pi/2, mens r ligger mellom 0 og 1. Integralet over den store ellipsen blir

$$
I_1 = \iint_{D_{1}} \frac{x}{4x^2+y^2}dxdy = \int\limits_{0}^{1}\int\limits_{0}^{\pi/2} \frac{2r\cos \theta}{4(2r\cos\theta)^2 + (4r\sin\theta)^2} \ 8r d\theta dr
$$

Men hel del forenkling får vi

$$
I_1 = \int\limits_{0}^{1}\int\limits_{0}^{\pi/2} \cos\theta \ d\theta dr
$$

Tilsvarende regning gir for integralet over den mindre ellipsen

$$
I_2 = \int\limits_{0}^{1}\int\limits_{0}^{\pi/2} \frac{1}{4}\cos \theta d\theta dr
$$

Dermed har vi at integralet som skal løses er

$$
I = I_1 - I_2 = \int\limits_{0}^{1}\int\limits_{0}^{\pi/2} \left( \cos\theta - \frac{1}{4}\cos \theta \right) \ d\theta dr = \int\limits_{0}^{1}\int\limits_{0}^{\pi/2} \frac{3}{4} \cos\theta \ d\theta dr
$$

Dermed er integralet

$$
I = \frac{3}{4}\bigg[\sin\theta \bigg]_{\theta=0}^{\theta= \pi/2} \bigg[ \ r \ \bigg]_{r = 0}^{r = 1} = \frac{3}{4}
$$
Ann255

Tusen takk! Nå ble alt klart ;)
Neon
Cantor
Cantor
Innlegg: 116
Registrert: 11/05-2016 19:11

Dette kan gjøres enda enklere. Hvis du gjør variabelskiftet [tex]x = \frac12 r cos\theta[/tex] og [tex]y = rsin\theta[/tex] så får du at [tex]4x^2 + y^2 = 1[/tex] beskriver en sirkel med radius [tex]1[/tex], og [tex]4x^2 + y^2 = 16[/tex] beskriver en sirkel med radius 4.

Da kan du evaluere [tex]\int_0^{\frac{\pi}{2}} \int_1^4 \frac{r^2cos\theta}{4r^2}drd\theta[/tex] for svaret ditt.
Gjest

Neon skrev:Dette kan gjøres enda enklere. Hvis du gjør variabelskiftet [tex]x = \frac12 r cos\theta[/tex] og [tex]y = rsin\theta[/tex] så får du at [tex]4x^2 + y^2 = 1[/tex] beskriver en sirkel med radius [tex]1[/tex], og [tex]4x^2 + y^2 = 16[/tex] beskriver en sirkel med radius 4.

Da kan du evaluere [tex]\int_0^{\frac{\pi}{2}} \int_1^4 \frac{r^2cos\theta}{4r^2}drd\theta[/tex] for svaret ditt.
Det beskriver ellipser, ikke sirkler
Neon
Cantor
Cantor
Innlegg: 116
Registrert: 11/05-2016 19:11

Gjest skrev:
Neon skrev:Dette kan gjøres enda enklere. Hvis du gjør variabelskiftet [tex]x = \frac12 r cos\theta[/tex] og [tex]y = rsin\theta[/tex] så får du at [tex]4x^2 + y^2 = 1[/tex] beskriver en sirkel med radius [tex]1[/tex], og [tex]4x^2 + y^2 = 16[/tex] beskriver en sirkel med radius 4.

Da kan du evaluere [tex]\int_0^{\frac{\pi}{2}} \int_1^4 \frac{r^2cos\theta}{4r^2}drd\theta[/tex] for svaret ditt.
Det beskriver ellipser, ikke sirkler
Vanligvis så beskriver de ellipser, ja. Med de nye koordinatene våre så beskriver de sirkler. Derfor kan vi integrere over området mellom disse "sirklene" med variabelskifte vi har gjort. Prøv gjerne å løse det og se om du får riktig svar ([tex]\frac34[/tex]).
Svar