Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.
Oppgave 1.22 La x være et oddetall. Bevis at 4 går opp i x^2-1. Velg noen verdier for x og vis at også 8 går opp i x^2-1. Klarer du å forklare hvorfor det er slik?
Hei, på det bildet ovenfor ser du det er markert med noe rødt. Og akkurat det forstår jeg ikke helt. Kan noen her hjelpe meg med å forklare hva det går ut på?
Er du med på at produktet av to påfølgende tall alltid må være delelig på 2? En av faktorene må jo være et partall siden annenhvert tall i tallrekka er det. Derfor kan vi med sikkerhet si at et tall k ganget med neste tall, k+1, altså [tex]k(k+1)[/tex], alltid vil være delelig på 2.
Fra før er det funnet ut at [tex]x^2 - 1[/tex] er delelig på 4, og at vi står igjen med [tex]k^2 + k[/tex], som vi nå ser at er delelig på 2. 2 er altså en faktor i [tex]k^2 + k[/tex]. Det betyr at 2 også må være en faktor i [tex]x^2 - 1[/tex], som vi vet at også har faktoren 4. Til sammen blir disse faktorene 8 -- altså er [tex]x^2 - 1[/tex] delelig på 8.