Posted: 07/08-2008 00:56
Oppgave
Finn [tex]h[/tex] når [tex]V = 200[/tex], [tex]R = 5[/tex] og [tex]r = 3[/tex]
[tex]V=\frac{\pi h}{3} (R^2+rR+r^2) \\ \, \\ V=\frac{\pi h\cdot\left(R^2+rR+r^2\right)}{3} \\ \, \\ 3V= \pi h\cdot \left(R^2 + rR + r^2\right) \\ \, \\ h=\frac{3V}{\pi\cdot\left(R^2 + rR + r^2\right)}[/tex]
Dermed;
[tex]h = \frac{3 \cdot 200}{\pi\cdot\left(5^2 + 3\cdot 5 + 3^2\right)} \\ \, \\ h = \frac{600}{49\pi} \approx 3.89[/tex]
Finn [tex]h[/tex] når [tex]V = 200[/tex], [tex]R = 5[/tex] og [tex]r = 3[/tex]
[tex]V=\frac{\pi h}{3} (R^2+rR+r^2) \\ \, \\ V=\frac{\pi h\cdot\left(R^2+rR+r^2\right)}{3} \\ \, \\ 3V= \pi h\cdot \left(R^2 + rR + r^2\right) \\ \, \\ h=\frac{3V}{\pi\cdot\left(R^2 + rR + r^2\right)}[/tex]
Dermed;
[tex]h = \frac{3 \cdot 200}{\pi\cdot\left(5^2 + 3\cdot 5 + 3^2\right)} \\ \, \\ h = \frac{600}{49\pi} \approx 3.89[/tex]