Page 2 of 2

Posted: 30/08-2006 20:08
by sEirik
[tex]\frac{2}{\sqrt[4]{2^3}} = [/tex]

[tex]2 \times \frac{1}{2^{\frac{3}{4}}} = [/tex]

[tex]2^1 \times 2^{-\frac{3}{4}} = [/tex]

[tex]2^{1-\frac{3}{4}} = [/tex]

[tex]2^{\frac{1}{4}} = [/tex]

[tex]\sqrt[4]{2}[/tex]

Posted: 30/08-2006 20:11
by OleMartin
sEirik wrote:[tex]\frac{2}{\sqrt[4]{2^3}} = [/tex]

[tex]2 \times \frac{1}{2^{\frac{3}{4}}} = [/tex]

[tex]2^1 \times 2^{-\frac{3}{4}} = [/tex]

[tex]2^{1-\frac{3}{4}} = [/tex]

[tex]2^{\frac{1}{4}} = [/tex]

[tex]\sqrt[4]{2}[/tex]

Aha, nå forstår jeg, tusen hjertelig :D

Posted: 31/08-2006 18:40
by OleMartin
Jeg har et spørsmål til, hva blir:


8^1/3 * 2^2/3

Posted: 31/08-2006 20:16
by sEirik
8^1/3 * 2^2/3

det blir

[tex]\frac{8^1}{3} \cdot \frac{2^2}{3} =[/tex]

[tex]\frac{8 \cdot 4}{3 \cdot 3} =[/tex]

[tex]\frac{32}{9}[/tex]


Du mente sikkert det her ...

[tex]8^{\frac{1}{3}} \cdot 2^{\frac{2}{3}}[/tex]

... og da må du HUSKE PARANTESER! :wink: :lol:

[tex]8^{\frac{1}{3}} \cdot 2^{\frac{2}{3}} =[/tex]

Vi vet at [tex]8 = 2^3[/tex], så vi setter inn:

[tex](2^3)^{\frac{1}{3}} \cdot 2^{\frac{2}{3}} =[/tex]

[tex]2^{3 \cdot \frac{1}{3} + \frac {2}{3}} =[/tex]

[tex]2^{\frac{5}{3}} =[/tex]

[tex]\sqrt[3]{2^5} =[/tex]