Kombinasjon av tilf. variable.
Posted: 24/03-2007 19:31
Slår til med en oppgave til med det samme.
X and Y are independent rand. var. Find the pdf for X+Y.
[tex]p_X(k) =\frac{\lambda^k}{k!}\cdot e^{-\lambda} [/tex]
[tex]p_Y(k) = \frac{\mu^k}{k!} \cdot e^{-\mu} [/tex]
Z = X + Y
[tex] p_Z(z) = \sum_{all x} p_X(x) \cdot p_Y(z-x)[/tex]
[tex]p_Z(z) = \sum_{x=0}^z \frac{\lambda^x}{x!}\cdot e^{-\lambda} \cdot \frac{\mu^{z-x}}{{(z-x)}!} \cdot e^{-\mu}[/tex]
[tex]= \ e^{-(\lambda + \mu)} \ \sum_{x=0}^z \frac{\lambda^x}{x!} \cdot \frac{\mu^{z-x}}{(z-x)!}[/tex]
Her blir det stopp.
X and Y are independent rand. var. Find the pdf for X+Y.
[tex]p_X(k) =\frac{\lambda^k}{k!}\cdot e^{-\lambda} [/tex]
[tex]p_Y(k) = \frac{\mu^k}{k!} \cdot e^{-\mu} [/tex]
Z = X + Y
[tex] p_Z(z) = \sum_{all x} p_X(x) \cdot p_Y(z-x)[/tex]
[tex]p_Z(z) = \sum_{x=0}^z \frac{\lambda^x}{x!}\cdot e^{-\lambda} \cdot \frac{\mu^{z-x}}{{(z-x)}!} \cdot e^{-\mu}[/tex]
[tex]= \ e^{-(\lambda + \mu)} \ \sum_{x=0}^z \frac{\lambda^x}{x!} \cdot \frac{\mu^{z-x}}{(z-x)!}[/tex]
Her blir det stopp.