Integral regning

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
russ07
Jacobi
Jacobi
Posts: 332
Joined: 30/10-2006 19:43
Location: Oslo

[symbol:integral] [tex] \frac{1}{cos^2 * 2x}[/tex]
Just Remember u have afriend, when tRoubles seem like never end...!!
sEirik
Guru
Guru
Posts: 1551
Joined: 12/06-2006 21:30
Location: Oslo

Husk dx ;)

[tex]I = \int \frac{{\rm d}x}{\cos^2 (2x)}[/tex]

[tex]u = 2x[/tex]

[tex]I = \frac{1}{2} \int \frac{{\rm d}u}{\cos^2 (u)}[/tex]

[tex]I = \frac{1}{2}\tan (u) + C = \frac{1}{2}\tan (2x) + C[/tex]
russ07
Jacobi
Jacobi
Posts: 332
Joined: 30/10-2006 19:43
Location: Oslo

sEirik wrote:Husk dx ;)

[tex]I = \int \frac{{\rm d}x}{\cos^2 (2x)}[/tex]

[tex]u = 2x[/tex]

[tex]I = \frac{1}{2} \int \frac{{\rm d}u}{\cos^2 (u)}[/tex]

[tex]I = \frac{1}{2}\tan (u) + C = \frac{1}{2}\tan (2x) + C[/tex]
Hvordan fikk du den til å bli tanx? eller takk for hjelpen.
Just Remember u have afriend, when tRoubles seem like never end...!!
sEirik
Guru
Guru
Posts: 1551
Joined: 12/06-2006 21:30
Location: Oslo

[tex]\int \frac{1}{\cos^2 (x)} {\rm d}x = \tan x + C[/tex]

En vanlig regel. Prøv å vise den ved å derivere tangens, som er sin/cos.
russ07
Jacobi
Jacobi
Posts: 332
Joined: 30/10-2006 19:43
Location: Oslo

sEirik wrote:[tex]\int \frac{1}{\cos^2 (x)} {\rm d}x = \tan x + C[/tex]

En vanlig regel. Prøv å vise den ved å derivere tangens, som er sin/cos.
ja, men blir den ikke tan[sup]2[/sup]x ??
Just Remember u have afriend, when tRoubles seem like never end...!!
sEirik
Guru
Guru
Posts: 1551
Joined: 12/06-2006 21:30
Location: Oslo

[tex]\tan^\prime (x) = \left ( \frac {\sin (x) }{\cos (x)} \right )^\prime = \frac{\sin^\prime (x)\cos(x) - sin(x)\cos^\prime (x)}{\cos^2 (x)}[/tex]

[tex] = \frac{\cos^2(x) + sin^2(x)}{\cos^2 (x)}[/tex]

[tex]\tan^\prime (x) = \frac{\cos^2(x) + sin^2(x)}{\cos^2 (x)} = \frac{1}{\cos^2(x)}[/tex]

Eventuelt:

[tex]\tan^\prime (x) = \frac{\cos^2(x) + sin^2(x)}{\cos^2 (x)} = 1 + \frac{\sin^2 (x)}{\cos^2 (x)} = 1 + \tan^2 (x)[/tex]
russ07
Jacobi
Jacobi
Posts: 332
Joined: 30/10-2006 19:43
Location: Oslo

sEirik wrote:[tex]\tan^\prime (x) = \left ( \frac {\sin (x) }{\cos (x)} \right )^\prime = \frac{\sin^\prime (x)\cos(x) - sin(x)\cos^\prime (x)}{\cos^2 (x)}[/tex]

[tex] = \frac{\cos^2(x) + sin^2(x)}{\cos^2 (x)}[/tex]

[tex]\tan^\prime (x) = \frac{\cos^2(x) + sin^2(x)}{\cos^2 (x)} = \frac{1}{\cos^2(x)}[/tex]

Eventuelt:

[tex]\tan^\prime (x) = \frac{\cos^2(x) + sin^2(x)}{\cos^2 (x)} = 1 + \frac{\sin^2 (x)}{\cos^2 (x)} = 1 + \tan^2 (x)[/tex]
Okei nå skjønner jeg det...Tusen takk :P
Just Remember u have afriend, when tRoubles seem like never end...!!
Post Reply