Page 1 of 1
Hjelp med matriser
Posted: 22/05-2007 16:12
by Homer
1 1 1
1 2 3=A
1 4 5
A er en matrise. Skal finne en 3x3 matrise B slik at AB=BA. B
kan ikke være lik A, 0 matrisen eller identitetsmatrisen.
Hvordan kan jeg gå frem for å finne B?
Posted: 22/05-2007 16:25
by Magnus
[tex]AB = BA[/tex]
[tex] \left( \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{array} \right)\left( \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right) = \left( \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right)\left( \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{array} \right) [/tex]
[tex]\left( \begin{array}{ccc} a+d+g & b+e+h & c+f+i \\ a+2d+3g & b+2e+3h & c + 2f +3i \\ a + 4d + 5g & d + 4e + 5f & c + 4f + 5i \end{array}\right) = \left( \begin{array}{ccc} a+b+c & a+2b+4c & a+3b+5c \\ d + e + f & d + 2e + 3f & d + 3e + 5f \\ g + h + i & g + 2h + 4i & g + 3h + 5i \end{array}\right) [/tex]
Så kan du vel trekke over og finne løsningsrommet?
Posted: 22/05-2007 16:28
by Homer
Tusen takk for hjelpen. Er dette den enkleste måten å gjøre det på?
Posted: 22/05-2007 16:33
by daofeishi
Mulig det er enklere å merke seg at en matrise kommuterer med sin invers, og at oppgaven ikke sier noe om at du ikke kan benytte deg av [tex]A^{-1}[/tex]
Posted: 22/05-2007 16:59
by Homer
Tusen takk folkens. Fikk det til nå

Posted: 22/05-2007 17:43
by Magnus
Sant Daofeishi. Eksluderte den muligheten jeg, hehe. *doh*