Page 1 of 1

Derivasjon ved bruk av produktregelen

Posted: 24/01-2008 15:03
by jsol
f(x)= [symbol:rot]X (3x[sup]2[/sup]+2)

kan noen hjelpe meg å derivere denne? Den skal løses ved hjelp av produktregelen.

Håper det ble bedre nå

Posted: 24/01-2008 15:04
by Vektormannen
Hva skal være under rottegnet? Kan du vennligst sette paranteser?

Posted: 24/01-2008 15:16
by Vektormannen
Begynn med å sette opp.

[tex]f^\prime(x) = (\sqrt x)^\prime \cdot (3x^2 + 2) + \sqrt x \cdot (3x^2 + 2)^\prime[/tex]

Vet ikke om du har lært det som en regel eller ikke, men den deriverte av kvadratroten er [tex]\frac{1}{2\sqrt x}[/tex]. Dette kan du utlede enkelt selv om du skriver rota som en potens. Den deriverte av [tex](3x^2+2)[/tex] blir selvsagt [tex]6x[/tex]. Da er det bare å sette inn de deriverte uttrykkene:

[tex]f^\prime(x) = \frac{1}{2\sqrt x} (3x^2 + 2) + \sqrt x \cdot 6x[/tex]

Så er det bare å pynte litt på det.

Posted: 24/01-2008 15:19
by jsol
Vektormannen wrote:Begynn med å sette opp.

[tex]f^\prime(x) = (\sqrt x)^\prime \cdot (3x^2 + 2) + \sqrt x \cdot (3x^2 + 2)^\prime[/tex]

Vet ikke om du har lært det som en regel eller ikke, men den deriverte av kvadratroten er [tex]\frac{1}{2\sqrt x}[/tex]. Dette kan du utlede enkelt selv om du skriver rota som en potens. Den deriverte av [tex](3x^2+2)[/tex] blir selvsagt [tex]6x[/tex]. Da er det bare å sette inn de deriverte uttrykkene:

[tex]f^\prime(x) = \frac{1}{2\sqrt x} (3x^2 + 2) + \sqrt x \cdot 6x[/tex]

Så er det bare å pynte litt på det.
Så langt skjønner jeg, men i svaret er [symbol:rot]X * 6x multiplisert med 2 [symbol:rot] X Det siste der forstår jeg ikke helt hvorfor

Posted: 24/01-2008 15:25
by Vektormannen
Det er noe av det du gjør for å "pynte" på uttrykket.

[tex]f^\prime(x) = \frac{3x^2+2}{2\sqrt x} + \sqrt x \cdot 6x[/tex]

Skriver det andre leddet som en brøk med [tex]2\sqrt x[/tex] i nevner. Da må vi også gange med det i teller (ellers forandrer vi verdien av leddet). Da får vi:

[tex]f^\prime(x) = \frac{3x^2+2}{2\sqrt x} + \frac{2\sqrt x \cdot \sqrt x \cdot 6x}{2\sqrt x} = \frac{3x^2+2}{2\sqrt x} + \frac{12x^2}{2\sqrt x}[/tex]

Og da kan man trekke sammen på felles brøkstrek.

[tex]f^\prime(x) = \frac{15x^2 + 2}{2\sqrt x}[/tex]

Posted: 24/01-2008 15:27
by jsol
Takk :D