Vektorer
Posted: 05/03-2008 16:06
Gjør jeg noe grunnleggende feil her?
Oppgave: Finn binormalen og torsjonen i punktet [tex]\vec{r}(\pi )[/tex].
[tex]\vec{r}(t) = [\cos{t},\sin{t},t][/tex]
[tex]\vec{v}(t) = [-\sin{t},\cos{t},1][/tex]
[tex]\vec{T} = \frac{\vec{v}}{|\vec{v}|} = [-\sin{t},\cos{t},1]\frac{1}{\sqrt{2}[/tex]
[tex]\vec{N} = \frac{\rm{d}\vec{T}/\rm{d}t}{|\rm{d}\vec{T}/\rm{d}t|} = [-\cos{t},-\sin{t},0][/tex]
[tex]\vec{B} = \vec{T} \ \rm{x} \ \vec{N} = \left| \begin{matrix} \vec{i}&\vec{j}&\vec{k} \\ -\frac{1}{\sqrt{2}}\sin{t}&\frac{1}{\sqrt{2}}\cos{t}&\frac{1}{\sqrt{2}} \\ -\cos{t}&-\sin{t}&0 \end{matrix}\right| = \vec{i}(\sin{t}) - \vec{j}(\frac{1}{\sqrt{2}}\cos{t}) + \vec{k}(\frac{1}{\sqrt{2}}\cos^2{t}+\frac{1}{\sqrt{2}}\sin^2{t})[/tex]
[tex]\vec{B} = [\sin{t},-\frac{1}{\sqrt{2}}\cos{t},\frac{1}{\sqrt{2}}][/tex]
Følgelig får vi:
[tex]\vec{B}(\pi ) = [0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}][/tex]
Her er svaret mitt annereledes enn fasit, den sier nemlig: [tex]\vec{B}(\pi ) = [0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}][/tex]
Oppgave: Finn binormalen og torsjonen i punktet [tex]\vec{r}(\pi )[/tex].
[tex]\vec{r}(t) = [\cos{t},\sin{t},t][/tex]
[tex]\vec{v}(t) = [-\sin{t},\cos{t},1][/tex]
[tex]\vec{T} = \frac{\vec{v}}{|\vec{v}|} = [-\sin{t},\cos{t},1]\frac{1}{\sqrt{2}[/tex]
[tex]\vec{N} = \frac{\rm{d}\vec{T}/\rm{d}t}{|\rm{d}\vec{T}/\rm{d}t|} = [-\cos{t},-\sin{t},0][/tex]
[tex]\vec{B} = \vec{T} \ \rm{x} \ \vec{N} = \left| \begin{matrix} \vec{i}&\vec{j}&\vec{k} \\ -\frac{1}{\sqrt{2}}\sin{t}&\frac{1}{\sqrt{2}}\cos{t}&\frac{1}{\sqrt{2}} \\ -\cos{t}&-\sin{t}&0 \end{matrix}\right| = \vec{i}(\sin{t}) - \vec{j}(\frac{1}{\sqrt{2}}\cos{t}) + \vec{k}(\frac{1}{\sqrt{2}}\cos^2{t}+\frac{1}{\sqrt{2}}\sin^2{t})[/tex]
[tex]\vec{B} = [\sin{t},-\frac{1}{\sqrt{2}}\cos{t},\frac{1}{\sqrt{2}}][/tex]
Følgelig får vi:
[tex]\vec{B}(\pi ) = [0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}][/tex]
Her er svaret mitt annereledes enn fasit, den sier nemlig: [tex]\vec{B}(\pi ) = [0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}][/tex]