Page 1 of 1

Integrasjon med delbrøkoppspalting [løst]

Posted: 26/04-2008 11:43
by sylan
Hei,

Har stykket: [tex] \int \frac{6x^2 - 17x + 6}{x^3 - 5x^2 + 6x} dx[/tex]

Har prøvd: [tex]= \int \frac{6x^2 - 17x +6 }{x(x^2 - 5x +6)} dx[/tex]

= [tex]\int \frac{6x^2 - 17x + 6}{(x^2-3x)(x- \frac{9}{2})}[/tex]

Så sliter jeg videre...

Skjønner ikke hvordan jeg skal utføre polynomdivisjonen:

[tex]6x^2 - 17x + 6 : x(x^2 - 5x + 6)[/tex]

eller om dette er veien å gå...

Hjelp mottas med takk...

Posted: 26/04-2008 11:53
by mrcreosote
Her er graden til polynomet i nevneren større enn graden til polynomet i telleren, derfor kan du ikke gjennomføre noen polynomdivisjon. Du kan imidlertid håpe at det fins et felles nullpunkt for teller og nevner og dele med dette. Hvis ikke er delbrøkoppspalting veien å gå, men pass på å faktorisere nevneren riktig først.

Posted: 26/04-2008 11:59
by sylan
Mener du at jeg har faktorisert feil?

Posted: 26/04-2008 12:38
by Markonan
Denne overgangen skurrer litt:
[tex]x(x^2 - 5x + 6) \;\not=\; (x^2 - 3x)(x - \frac{9}{2})[/tex]

Posted: 26/04-2008 12:44
by sylan
Det jeg har gjort er å faktorisere:

[tex]x^2 - 5x + 6[/tex]

[tex]=(x-3)(x-\frac{9}{2})[/tex]

, også ganget inn x i første ledd...er dette feil?

Posted: 26/04-2008 12:49
by Markonan
Du har tenkt riktig, men du kan jo gange ut det du faktoriserte til:
[tex](x-3)(x-\frac{9}{2}) \;=\; x\cdot x \;-\; x\cdot\frac{9}{2} \;-\; 3\cdot x \;+\; 3\cdot \frac{9}{2} \;=[/tex]

[tex]x^2 - \frac{15}{2}x + \frac{27}{2} \;=\; x^2 - 7.5x + 13.5[/tex]

Dette skal jo bli det samme du startet med, eller hva? :)

Posted: 26/04-2008 12:56
by sylan
Jau, ser den.... :roll:

Hvordan går jeg da videre med oppgaven?

Står da med:

[tex]\int \frac{6x^2 - 17x +6}{x(x-3)(x-\frac{9}{2})}dx[/tex]

Skal jeg utføre en polynomdivisjon?

I såfall, hvordan?

Posted: 26/04-2008 13:19
by Janhaa
[tex]x^3-5x^2+6x=0[/tex]
for x lik; 0, 2 eller 3

slik at

[tex]x^3-5x^2+6x=x(x-2)(x-3)[/tex]

dvs

[tex]\frac{6x^2-17x+6}{x(x-2)(x-3)}\,=\,\frac{A}{x}\,+\,\frac{B}{x-2}\,+\,\frac{C}{x-3}[/tex]

osv

Posted: 26/04-2008 13:26
by sylan
Ah..

Da tror jeg det vil løse seg...

Hvordan kommer man raskt frem til nullpunktene for et tredjegradspolynom?
Kalkis?