Page 1 of 1

Skjæringspunkt

Posted: 19/09-2008 13:58
by Arbeider
Likningsettet

[tex]y=\frac{3}{4} x +\frac{5}{4}[/tex]

[tex](x-1)^2 + (y-2)^2=25[/tex]

Da jeg satte utrykket y fra den første likningen i den andre så fikk jeg

[tex]25x^2-32x-295=0[/tex]

Er det noen andre som får som meg?

Posted: 19/09-2008 14:22
by Vektormannen
Har ikke rekna det ut selv, men et hint du kan bruke i stedet:

[tex](x-1)^2 + (y-2)^2 = 25[/tex]

[tex](x-1)^2 + (\frac{3}{4}x + \frac{5}{4} - 2)^2 = 25[/tex]

[tex](x-1)^2 + (\frac{3}{4}x - \frac{3}{4})^2 = 25[/tex]

3/4 kan faktoriseres ut:
[tex](x-1)^2 + (\frac{3}{4})^2(x-1)^2 = 25[/tex]

(x-1) kan faktoriseres ut:
[tex](x-1)^2(1 + (\frac{3}{4})^2) = 25[/tex]

Posted: 19/09-2008 14:43
by Arbeider
Vektormannen wrote:
3/4 kan faktoriseres ut:
[tex](x-1)^2 + (\frac{3}{4})^2(x-1)^2 = 25[/tex]
Hvis du ganger [tex](\frac{3}{4})^2[/tex] med x i parentes som allerede fra før er opphøyd i annen så blir det dobbelt så stor verdi,er du sikker på at denne faktoriseringen er riktig?

Posted: 19/09-2008 14:45
by Vektormannen
[tex](\frac{3}{4}x - \frac{3}{4})^2 = (\frac{3}{4}(x-1))^2[/tex]

Det følger av regelen [tex](ab)^2 = a^2b^2[/tex] at [tex](\frac{3}{4}(x-1))^2 = (\frac{3}{4})^2(x-1)^2[/tex].