Page 1 of 2

Diff ligning igjenn

Posted: 26/03-2009 23:08
by Rasskal
Sitter på ny med noen differensiallikninger.
Må bare få si at det begynner å bli mange år siden jeg sist gjorde slike oppgaver.

Diff ligningen er som følger:
y"-6y'+9y =x

Regner da ut at denne bare gir ett svar : 3.
Setter da opp at den Homogene løsningen blir Ce^3x (er dette rett?)

Videre derriverer jeg x for å få videre løsning,

y: xA
y': 1A
y": 0A

setter dette inn i ligningen og får

0 - 6A + 9xA = x

Lurer da videre på hvordan jeg skla kunne finne A.
Har kjørt meg helt fast her.

Posted: 26/03-2009 23:10
by daofeishi
Dette er ikke helt rett - hvilket problem oppstår når den karakteristiske likningen bare har en rot? Hva gjøres da?

Du trenger også en partikulær løsning. Den finner du greit ved inspeksjon her. Den fullstendige løsningen er gitt som summen av homogen og partikulær løsning. Initialbetingelsene bestemmer verdien av integrasjonskonstantene,

Posted: 27/03-2009 00:07
by Rasskal
Ok regnet ut første delen på nytt .

Får fortsatt at Y1(x) = 3 dermed e^3x

Takket være informasjonen du gav meg så finner jeg nå Y2(x) med å "gjette" på en funksjon som kan passe inn.

Valgte da xe^3x som jeg derriverte to ganger og satt inn i likningens venstre side for og se om jeg kunne bruke det.

Får nå at det første svaret skal være

Ae^3x + Bxe^3x -> e^3x(A+Bx)

Men nå, hvordan finner jeg den videre løsningen?
i selve oppgaven er der ingen initialbetingelser.

Posted: 27/03-2009 00:14
by daofeishi
Flott, det stemmer at den homogene løsningen er Ae[sup]3x[/sup]+Bxe[sup]3x[/sup].

Hvis r er en repetert rot med multiplisitet n i det karakteristiske polynomet, kan det vises at de korresponderende løsningene er
e[sup]rx[/sup], xe[sup]rx[/sup], x[sup]2[/sup]e[sup]rx[/sup], ..., x[sup]n-1[/sup]e[sup]rx[/sup]

For den partikulære løsningen: høyresiden er et polynom. Da er det nærliggende å gjette på en polynomløsning.

Siden du ikke har noen initialbetingelser, vil løsningen din involvere et par konstanter (A og B over)

Posted: 27/03-2009 01:00
by Rasskal
Kjedelig og inrømme det, men her ser jeg ikke hvordan jeg skal sette opp ligningen for å finne de resterende svarene.

Har tatt en rask kikk i boken men den viser ikke noe som jeg klarer å bruke her.

Posted: 27/03-2009 10:50
by Gustav
Ansatz:
[tex]y_p=k_0+k_1x+k_2x^2+...+k_{n}x^n[/tex].

Ved innsetting i ligninga blir det klart at alle konstantene bortsett fra [tex]k_1[/tex] og[tex] k_0[/tex] (som finnes ved innsetting) må være 0.


Ekstraoppgave: kom til å tenke på at det kan være instruktivt å finne generell løsning av

[tex]y^{,,}-6y^,+9y =e^{3x}[/tex] når du først holder på.

Posted: 27/03-2009 11:21
by daofeishi
plutarco wrote:Ansatz:Ved innsetting i ligninga blir det klart at alle konstantene bortsett fra [tex]k_1[/tex] (som finnes ved innsetting) må være 0.
Bortsett fra k[sub]0[/sub] og k[sub]1[/sub] mener du vel?

Posted: 27/03-2009 11:27
by Gustav
Ja, selvsagt

Posted: 27/03-2009 11:58
by jonasfd
Sitter med en lignende oppgave og jeg forstår ikke hvordan jeg skal sette opp likningen ovenfor.

Tenker da på Yp.

Posted: 27/03-2009 12:03
by Gustav
jonasfd wrote:Sitter med en lignende oppgave og jeg forstår ikke hvordan jeg skal sette opp likningen ovenfor.

Tenker da på Yp.
Hva er høyresida på den ligninga di?

Posted: 27/03-2009 12:07
by jonasfd
x+e^9x

Posted: 27/03-2009 12:09
by Gustav
Er 9 en rot i den karakteristiske ligninga? I så fall, hva er multiplisiteten?

en tommelfingerregel er at partikulærløsninga er en lineærkombinasjon av høyresiden og alle dens deriverte.

Så jeg ville prøvd med

[tex]y_p=A+Bx+Ce^{9x}[/tex]

Hvis 9 er rot i karakteristisk ligning ville jeg prøvd med

[tex]y_p=A+Bx+Cx^me^{9x}[/tex] der m er multiplisiteten.

Posted: 27/03-2009 12:22
by Rasskal
Vil dette si at jeg skal sette opp min Yp = A+Bx + Cx ?
Og hva sier dette meg? mitt problem her er det og regne ut noe som helst, finner ingen liknende referanse i boka, alt den tar for seg innenfor dette er det å finne den Homogene løsningen.

Posted: 27/03-2009 12:40
by jonasfd
3 er den eneste roten i den karakteristiske likningen

Posted: 27/03-2009 12:43
by Gustav
Rasskal wrote:Vil dette si at jeg skal sette opp min Yp = A+Bx + Cx ?
Og hva sier dette meg? mitt problem her er det og regne ut noe som helst, finner ingen liknende referanse i boka, alt den tar for seg innenfor dette er det å finne den Homogene løsningen.

[tex]y_p=A+Bx[/tex]. Sett inn i ligninga og finn konstantene.