Page 1 of 1
					
				Trigonometrisk integral
				Posted: 03/02-2010 14:47
				by Betelgeuse
				Kan man løse et integral av typen
[tex]\int x \cos x \sin^2 x dx[/tex]?
Jeg vet at man lett kan løse det hvis ikke faktoren x står forran, men kan det fortsatt løses?
			 
			
					
				
				Posted: 03/02-2010 15:00
				by Stone
				Kan sikkert gjøre det enklere.. men hva med å bruke delvisintegral, hvor u=x v'=cosxsin^2x
			 
			
					
				
				Posted: 03/02-2010 15:17
				by Janhaa
				har ikke prøvd sjøl, men sjekk integrator
1)
http://www62.wolframalpha.com/input/?i= ... inx%29%5E2
og show steps. handler jo om å sette sin^2(x) = 1 - cos^2(x)
og delvis integrasjon etterpå
-----------------------------
2)
eller substitusjon u=sinx
slik at
[tex]I=\int x\cos(x)\sin^2(x)\,dx=\int u^2\arcsin(u)\,du[/tex]
og se om dette evt fører fram m delvis integrasjon.
 
			
					
				
				Posted: 03/02-2010 15:46
				by Betelgeuse
				Sjekket ut steps og det var litt av en prosess man skulle igjennom 

 Men det gikk jo ihvertfall ann å løse.