Page 1 of 1
					
				Divergensteorem / Stokes' teorem
				Posted: 18/05-2010 16:19
				by pjuus
				Hvordan vet man om n dS i Divergensteoremet og Stokes' teoremet kan skrives om til å være:
 [symbol:plussminus] [-fx, -fy, 1] dx dy ?
Hvorfor bruker man ikke n = N / |N| ?
I hvilke tilfeller bruker man den første måten, og hvilke tilfeller bruker man den andre måten?
			 
			
					
				
				Posted: 18/05-2010 17:05
				by Thor-André
				Dette er et spesialtiflelle hvor [tex] z = f(x,y) [/tex]
Da gjelder:
[tex] d\sigma  = \sqrt {1 - f_x^2  + f_y^2 } dxdy [/tex]
Som er en annen måte å skrive dette på:
[tex] d\sigma  = |\vec{N}(x,y)| dxdy [/tex]
Videre spør oppgaven etter:
[tex]  \int \int_S \vec{F} \cdot \vec{n} d\sigma [/tex]
Som du sier så er: 
[tex] \vec{n} = \pm \frac{\vec{N}(x,y)}{|\vec{N}(x,y)|} [/tex]
Da kan vi skrive om:
[tex] \vec{n} d\sigma = \pm \frac{\vec{N}(x,y)}{|\vec{N}(x,y)|} \cdot |\vec{N}(x,y)| dxdy [/tex]
[tex]  \vec{n} d\sigma = \pm \vec{N}(x,y) dxdy [/tex]
[tex]  \vec{n} d\sigma = \pm [-f_x, -f_y,1] dxdy [/tex]
			 
			
					
				
				Posted: 18/05-2010 18:38
				by pjuus
				Ok, takk 
 
Ett spørsmål til:
Man kan skrive om Stokes teorem om til:
 [symbol:integral] F*dr
Hva betyr / står 
dr for?
 
			
					
				
				Posted: 18/05-2010 18:50
				by Thor-André
				Bare hyggelig!  
 
 
[tex] \int \vec{F} \cdot d\vec{r}  = \int \vec{F} \cdot \frac{d\vec r}{dt} dt =   \int \vec{F} \cdot \vec{T} ds [/tex]
Med andre ord:
[tex] \int d\vec{r} = \int \frac{d\vec r}{dt} dt [/tex]
I praksis vil det si at du deriverer posisjonsvektoren [tex] \vec{r} [/tex] med hensyn på t og integrer resultatet med hensyn på t!
 
			
					
				
				Posted: 18/05-2010 19:06
				by wingeer
				Du kan også se på det slik:
[tex]\int \mathbf{F} \cdot d\mathbf{\vec{r}} = \int P\mathbf{\hat{i}} + Q\mathbf{\hat{j}} + R\mathbf{\hat{k}} \cdot (dx, dy, dz)[/tex]
			 
			
					
				
				Posted: 18/05-2010 20:30
				by pjuus
				Takk igjen ;D