Page 1 of 1
Hjelp med integrasjon ved substitusjon
Posted: 18/01-2011 17:27
by hassad
(e^x)*(e^2x)*(e^3x)dx
Dette må jeg integrere ved hjelp av integrasjon ved substitusjon.
Er det noen som kan hjelpe meg?
Takk
Posted: 18/01-2011 17:33
by Vektormannen
Husk på logaritmeregelen [tex]a^{b} \cdot a^{c} = a^{b+c}[/tex]. Kan du bruke den til å trekke litt sammen her?
Posted: 18/01-2011 17:59
by hassad
Vektormannen wrote:Husk på logaritmeregelen [tex]a^{b} \cdot a^{c} = a^{b+c}[/tex]. Kan du bruke den til å trekke litt sammen her?
Gjorde det og jeg har nå fått: [symbol:integral](e^6x)*(du/6)
Hva kan jeg gjøre nå?
Posted: 18/01-2011 18:11
by Janhaa
hassad wrote:Vektormannen wrote:Husk på logaritmeregelen [tex]a^{b} \cdot a^{c} = a^{b+c}[/tex]. Kan du bruke den til å trekke litt sammen her?
Gjorde det og jeg har nå fått: [symbol:integral](e^6x)*(du/6)
Hva kan jeg gjøre nå?
[tex]u=e^{6x}[/tex]
Posted: 18/01-2011 18:11
by Vektormannen
Det ser riktig ut. For å komme frem til dette antar jeg du har valgt deg u = 6x som kjerne? I såfall kan du jo nå bytte ut eksponenten i e-potensen med u. Da har du et integral med kun u som integrasjonsvariabel. Det kan du vel løse?
Posted: 18/01-2011 18:20
by Integralen
[tex]\int {e^{6x} \: dx}[/tex]
[tex]u=6x[/tex]
Substituerer:
[tex]du=6dx[/tex]
Altså:
[tex]\frac{du}{6}=dx[/tex]
Dermed:
[tex]\frac{1}{6} \int {e^{u} \: du}=\frac {e^{u}}{6}+c[/tex]
[tex]u=6x[/tex]
gir:
[tex]\frac{e^{6x}}{6}+c[/tex]
Posted: 18/01-2011 18:33
by hassad
Integralen wrote:[tex]\int {e^{6x} \: dx}[/tex]
[tex]u=6x[/tex]
Substituerer:
[tex]du=6dx[/tex]
Altså:
[tex]\frac{du}{6}=dx[/tex]
Dermed:
[tex]\frac{1}{6} \int {e^{u} \: du}=\frac {e^{u}}{6}+c[/tex]
[tex]u=6x[/tex]
gir:
[tex]\frac{e^{6x}}{6}+c[/tex]
OK, men hvordan fikk du 1/6?
Posted: 18/01-2011 18:38
by Vektormannen
Det kommer av samme grunn som du hadde du/6 i ditt integral. Han har flyttet 1/6 utenfor.
Posted: 18/01-2011 18:44
by hassad
OK, jeg skjønner det nå. Tusen takk alle dere
