Page 1 of 1
Absolutt/ betinget konvergens
Posted: 08/03-2011 19:54
by Baz
Skal finne ut om rekkene konvergerer betinget eller konvergent..
[symbol:sum] cosh n / n! (rekken går til uendelig og n=1)
[symbol:sum] (n - [symbol:rot] n) / (n^2 + n) (rekken går til uendelig og n= 1)
og
[symbol:sum] (-1)^n * ( [symbol:rot] (n+1) - [symbol:rot] n ) / n (uendelig rekke, n=1)
Noen som kan hjelpe meg litt på vei?
Posted: 08/03-2011 21:22
by FredrikM
Er litt rusten på følger og slikt, så hinter på den siste:
Sistnevnte er alternerende, og envhver alternerende rekke med koeffisienter som går mot 0 konvergerer. Så det er bare å sjekke om [tex]\lim_{n\to \infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}=0[/tex].
Posted: 09/03-2011 11:02
by Tobbelobben
FredrikM: jeg tror han skal sjekke om rekkene har absolutt konvergens, eller konvergerer betinget, og da hjelper det vel ikke å vise at det n-te leddet går mot 0, for det viser jo bare at den konvergerer (generelt)?
Posted: 09/03-2011 11:42
by krje1980
Den siste rekken kovergerer slik jeg ser det ikke absolutt. Absoluttveriden blir jo:
[tex]\sum_{i=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}[/tex]
= [tex]\sum_{i=1}^{\infty} \frac{\sqrt{n+1}}{n} - \sum_{i=1}^{\infty} \frac{\sqrt{n}}{n}[/tex]
Og begge disse uttrykkene divergerer etter sammenligningskriteriet.
Ergo konvergerer rekken kun betinget, men ikke absolutt.
Posted: 09/03-2011 12:04
by Gustav
Tror ikke at man generelt kan konkludere med at en differanse av summer er divergent dersom hver sum er divergent.
Posted: 09/03-2011 15:19
by krje1980
Du har nok rett, plutarco. Det er vel kun når begge seriene er konvergente at dette gjelder.
Posted: 09/03-2011 15:30
by Baz
Takk for hjelp!!
Noen som vet om rekken 1/2n konvergerer eller divergerer?
Posted: 09/03-2011 16:11
by krje1980
[tex]\sum_{i=1}^{\infty} \frac{1}{2n}[/tex]
= [tex] \frac{1}{2} \sum_{i=1}^{\infty} \frac{1}{n}[/tex]
Sistnevnte rekke divergerer. Altså divergerer også rekken for 1/2n
Denne gangen er jeg sikker på at jeg har rett

Posted: 09/03-2011 19:44
by Baz
Tusen takk folkens!

Posted: 10/03-2011 01:04
by Baz
Noen som kan være så snill å hjelpe meg med den første..
Hva skal jeg gjøre med cosh n???
Er helt blank...
Posted: 10/03-2011 10:22
by Tarzan
hint:
cosh n = (e^n + e^-n)/2. Bruk forholdstesten...