Trig integral
Posted: 28/03-2011 00:30
Slet litt med et integral her forleden... Eller mener jeg har klart å integrere det, men får ikke samme svar som fasiten. Satt en stund før jeg kom frem til en substitusjon som fungerte... Finnes det noen enklere og penere måte å løse dette stykket på ?
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \int {\sqrt {\frac{1}{x} - 1} } dx [/tex]
[tex] x = \cos {\left( u \right)^2},\frac{{dx}}{{du}} = - 2\cos \left( u \right)\sin \left( u \right),\arccos \left( x \right) = {u^2} [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \int {\sqrt {\frac{1}{{\cos {{\left( u \right)}^2}}} - 1} } du \cdot - 2\cos \left( u \right)\sin \left( u \right) [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = - \int {\sqrt {{{\tan }^2}\left( u \right)} } du \cdot 2\cos \left( u \right)\sin \left( u \right) [/tex]
[tex]\int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = - 2\int {{{\sin }^2}\left( u \right)du} [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = - 2\int {\left( {\frac{{1 - \cos \left( {2u} \right)}}{2}} \right)} du [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \int {\cos \left( {2u} \right) + 1} du [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \frac{1}{2}\sin \left( {2u} \right) + u du [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \cos \left( u \right)\sin \left( u \right) + udu [/tex]
[tex] \underline{\underline {\int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \cos \left( {\sqrt {\arccos \left( x \right)} } \right)\sin \left( {\sqrt {\arccos \left( x \right)} } \right) + \sqrt {{{\cos }^{ - 1}}\left( x \right)} + C}} [/tex]
Svaret skal uansett være
[tex]I = \sqrt {x - {x^2}} - \frac{1}{2}\arcsin \left( {2x - 1} \right)[/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \int {\sqrt {\frac{1}{x} - 1} } dx [/tex]
[tex] x = \cos {\left( u \right)^2},\frac{{dx}}{{du}} = - 2\cos \left( u \right)\sin \left( u \right),\arccos \left( x \right) = {u^2} [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \int {\sqrt {\frac{1}{{\cos {{\left( u \right)}^2}}} - 1} } du \cdot - 2\cos \left( u \right)\sin \left( u \right) [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = - \int {\sqrt {{{\tan }^2}\left( u \right)} } du \cdot 2\cos \left( u \right)\sin \left( u \right) [/tex]
[tex]\int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = - 2\int {{{\sin }^2}\left( u \right)du} [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = - 2\int {\left( {\frac{{1 - \cos \left( {2u} \right)}}{2}} \right)} du [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \int {\cos \left( {2u} \right) + 1} du [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \frac{1}{2}\sin \left( {2u} \right) + u du [/tex]
[tex] \int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \cos \left( u \right)\sin \left( u \right) + udu [/tex]
[tex] \underline{\underline {\int {\frac{{\sqrt {x - {x^2}} }}{x}} dx = \cos \left( {\sqrt {\arccos \left( x \right)} } \right)\sin \left( {\sqrt {\arccos \left( x \right)} } \right) + \sqrt {{{\cos }^{ - 1}}\left( x \right)} + C}} [/tex]
Svaret skal uansett være
[tex]I = \sqrt {x - {x^2}} - \frac{1}{2}\arcsin \left( {2x - 1} \right)[/tex]