Stilig sammenheng
Posted: 21/05-2011 22:56
Kanskje det bare er meg, men dette her er litt stilig ^^
[tex]\( \int_{0}^{1} \frac{\text{dx}}{\sqrt{\ln(\frac{1}{x})}} \)^2 \, = \, \( \( - \frac{1}{2} \)! \)^2 \, = \, \int_{-1}^{1}{\arcsin(x)+\arccos(x)}dx \, = \, \int_{-\infty}^{\infty}\frac{\sin(x)}{x}dx \, = \, \pi [/tex]
[tex]\( \int_{0}^{1} \frac{\text{dx}}{\sqrt{\ln(\frac{1}{x})}} \)^2 \, = \, \( \( - \frac{1}{2} \)! \)^2 \, = \, \int_{-1}^{1}{\arcsin(x)+\arccos(x)}dx \, = \, \int_{-\infty}^{\infty}\frac{\sin(x)}{x}dx \, = \, \pi [/tex]