Topologi - spørsmål 1
Posted: 27/08-2011 21:49
Jobber med grunnleggende point-set topologi, og føler jeg bare har begrenset kontroll hittil. Setter derfor stor pris på om noen kan se på noen forslag til løsninger jeg har for to oppgaver. Jeg poster dem i separate tråder.
OK. Oppgave 1 lyder:
Let [tex]E^\prime[/tex] be the set of all limit points of a set [tex]E[/tex]. Prove that [tex]E^\prime[/tex] is closed. Prove that [tex]E[/tex] and [tex]\overline{E}[/tex] have the same limit points (Recall that [tex]\overline{E} = E\cup E^\prime[/tex].) Do [tex]E[/tex] and [tex]E^\prime[/tex] always have the same limit points?
For oppgavens første del har jeg resonnert som følger (jeg liker å løse oppgaver på engelsk):
Fix a point [tex]x[/tex] such that [tex]x \in (E^\prime)^{c}[/tex]. Then [tex]x[/tex] is not a limit point of [tex]E[/tex]. This means that [tex]x[/tex] must have a neighborhood such that [tex]y[/tex] is not in [tex]E[/tex] with [tex]x \neq y[/tex] for every [tex]y[/tex] in that neighborhood. This means that [tex]x[/tex] is an interior point for [tex] (E^\prime)^{c}[/tex], and this implies that [tex] (E^\prime)^{c}[/tex] is open, which again implies that [tex](E^\prime)[/tex] is closed.
For oppgavens andre del har jeg tenkt som følger (men her er jeg mer usikker):
Suppose that [tex]x[/tex] is a limit point of [tex]E[/tex]. Then [tex]x \in E^\prime[/tex]. Since [tex]x[/tex] is a limit point of [tex]E[/tex] this means that in every neighborhood of [tex]E[/tex] there is a point [tex]y[/tex], where [tex]y \neq x[/tex] with [tex]y[/tex] in [tex]E[/tex]. Further, we know that [tex]\overline{E} = E\cup E^\prime[/tex] and, from theorem 2.27 (Rudin's book), we know that [tex]\overline{E}[/tex] is closed. Since we proved above that [tex]E^\prime[/tex] is closed, this implies that [tex]E[/tex] must also be closed. By being closed, [tex]E[/tex] must contain all of its limit points, and we know that for [tex]E[/tex] all limit points are contained in [tex]E^\prime[/tex]. Thus, since [tex]\overline{E} = E\cup E^\prime[/tex], [tex]\overline{E}[/tex] must have the same limit points as [tex]E[/tex]
Siste del av oppgaven er jeg faktisk ikke sikker på.
Setter imidlertid veldig stor pris på om noen kan se over det "kladdearbeidet" jeg har gjort hittil. Jeg synes dette er VANSKELIG, og for første gang siden jeg begynte å studere matematikk for over to år siden føler jeg at jeg tar et fag der jeg virkelig sliter!
OK. Oppgave 1 lyder:
Let [tex]E^\prime[/tex] be the set of all limit points of a set [tex]E[/tex]. Prove that [tex]E^\prime[/tex] is closed. Prove that [tex]E[/tex] and [tex]\overline{E}[/tex] have the same limit points (Recall that [tex]\overline{E} = E\cup E^\prime[/tex].) Do [tex]E[/tex] and [tex]E^\prime[/tex] always have the same limit points?
For oppgavens første del har jeg resonnert som følger (jeg liker å løse oppgaver på engelsk):
Fix a point [tex]x[/tex] such that [tex]x \in (E^\prime)^{c}[/tex]. Then [tex]x[/tex] is not a limit point of [tex]E[/tex]. This means that [tex]x[/tex] must have a neighborhood such that [tex]y[/tex] is not in [tex]E[/tex] with [tex]x \neq y[/tex] for every [tex]y[/tex] in that neighborhood. This means that [tex]x[/tex] is an interior point for [tex] (E^\prime)^{c}[/tex], and this implies that [tex] (E^\prime)^{c}[/tex] is open, which again implies that [tex](E^\prime)[/tex] is closed.
For oppgavens andre del har jeg tenkt som følger (men her er jeg mer usikker):
Suppose that [tex]x[/tex] is a limit point of [tex]E[/tex]. Then [tex]x \in E^\prime[/tex]. Since [tex]x[/tex] is a limit point of [tex]E[/tex] this means that in every neighborhood of [tex]E[/tex] there is a point [tex]y[/tex], where [tex]y \neq x[/tex] with [tex]y[/tex] in [tex]E[/tex]. Further, we know that [tex]\overline{E} = E\cup E^\prime[/tex] and, from theorem 2.27 (Rudin's book), we know that [tex]\overline{E}[/tex] is closed. Since we proved above that [tex]E^\prime[/tex] is closed, this implies that [tex]E[/tex] must also be closed. By being closed, [tex]E[/tex] must contain all of its limit points, and we know that for [tex]E[/tex] all limit points are contained in [tex]E^\prime[/tex]. Thus, since [tex]\overline{E} = E\cup E^\prime[/tex], [tex]\overline{E}[/tex] must have the same limit points as [tex]E[/tex]
Siste del av oppgaven er jeg faktisk ikke sikker på.
Setter imidlertid veldig stor pris på om noen kan se over det "kladdearbeidet" jeg har gjort hittil. Jeg synes dette er VANSKELIG, og for første gang siden jeg begynte å studere matematikk for over to år siden føler jeg at jeg tar et fag der jeg virkelig sliter!