Completion of metric space
Posted: 19/09-2011 20:40
Hei.
Jeg har en oppgave hvor jeg har en intuitiv idé om hva løsningen skal være, men jeg er redd for at løsningen min er litt for enkel.
Oppgaven lyder:
Let [tex]X[/tex] be the metric space whose points are the rational numbers, with the metric [tex]d(x,y) = |x - y|[/tex]. What is the completion of this space?
OK. Løsningsforslag (på engelsk):
A space is complete if every Cauchy sequence in the space converges. A sequence [tex]\{p_n\}[/tex] is a Cauchy sequence if for every [tex]\epsilon > 0[/tex] there is an integer [tex]N[/tex] such that [tex]d(p_n, p_m) < \epsilon[/tex] if [tex]n \geq N[/tex] and [tex]m \geq N[/tex].
The given metric space does not however have this property. A sequence may converge to an irrational number, and since this number does not exist in the given space, the space is not complete. In other words, in the given metric space there may exist an [tex]\epsilon > 0[/tex] such that [tex]d(p_n, p_m) \not< \epsilon[/tex] for the converging sequence. Thus the completion of the space would be the inclusion of all real numbers.
Setter veldig stor pris på kommntarer/rettelser/innspill!
Jeg har en oppgave hvor jeg har en intuitiv idé om hva løsningen skal være, men jeg er redd for at løsningen min er litt for enkel.
Oppgaven lyder:
Let [tex]X[/tex] be the metric space whose points are the rational numbers, with the metric [tex]d(x,y) = |x - y|[/tex]. What is the completion of this space?
OK. Løsningsforslag (på engelsk):
A space is complete if every Cauchy sequence in the space converges. A sequence [tex]\{p_n\}[/tex] is a Cauchy sequence if for every [tex]\epsilon > 0[/tex] there is an integer [tex]N[/tex] such that [tex]d(p_n, p_m) < \epsilon[/tex] if [tex]n \geq N[/tex] and [tex]m \geq N[/tex].
The given metric space does not however have this property. A sequence may converge to an irrational number, and since this number does not exist in the given space, the space is not complete. In other words, in the given metric space there may exist an [tex]\epsilon > 0[/tex] such that [tex]d(p_n, p_m) \not< \epsilon[/tex] for the converging sequence. Thus the completion of the space would be the inclusion of all real numbers.
Setter veldig stor pris på kommntarer/rettelser/innspill!