****** faktorisering =D
Posted: 21/09-2011 21:29
Står bom fast [tex]x_1[/tex] skal være lik [tex]-1[/tex].Formelen for å løse generelle tredjegradslikninger sier at vi først regner ut [tex]Q[/tex] og [tex]C[/tex] som er gitt under
[tex]Q &= \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3} [/tex]
[tex]C &= \sqrt[3]{\frac{1}{2}\left( Q + 2b^3 - 9abc + 27a^2d \right)} [/tex]
Når vi har regnet ut disse er løsningene gitt ved
[tex]x_1 = -\frac{b}{3a} - \frac{C}{3a} - \frac{b^2 - 3ac}{3aC} [/tex]
[tex]x_2 = -\frac{b}{3a} + \frac{C(1 + i\sqrt{3})}{6a} + \frac{\left( 1-i\sqrt{3} \right) \left( b^2 - 3ac \right) }{6ac} [/tex]
[tex]x_3 = -\frac{b}{3a} + \frac{C(1 - i\sqrt{3})}{6a} + \frac{\left( 1+i\sqrt{3} \right) \left( b^2 - 3ac \right) }{6ac} [/tex]
Phew... Så da bare begynner vi å regne
[tex]Q = \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3} [/tex]
[tex] = \sqrt{(2(-4)^3 - 9(1)(-4)(-1) + 27(1)^2(4))^2 - 4((-4)^2 - 3(1)(-1))^3[/tex]
[tex] = 90 \sqrt{-3} [/tex]
[tex]C = \sqrt[3]{\frac{1}{2}\left( Q + 2b^3 - 9abc + 27a^2d \right)} [/tex]
[tex] = \sqrt[3]{\frac{1}{2}\left( 90 \sqrt{-3} + 2(-4)^3 - 9(1)(-4)(-1) + 27(1)^2(4) \right)} [/tex]
[tex] = \sqrt[3]{45 \sqrt{-3} - 28} [/tex]
Når vi har regnet ut disse er løsningene gitt ved
[tex]x_1 = \frac{(-4)}{3(1)} - \frac{\sqrt[3]{45 \sqrt{-3} - 28}}{3(1)} - \frac{(-4)^2 - 3(1)(-1)}{3(1)\sqrt[3]{45 \sqrt{-3} - 28}} [/tex]
[tex]x_1 = \frac{4}{3} - \frac{\sqrt[3]{45 \sqrt{-3} - 28}}{3} - \frac{19}{3\sqrt[3]{45 \sqrt{-3} - 28}}[/tex]
Herfra blir det noe inn i granskauen med faktorisering for å forenkle uttrykket over...
[tex]x_1 = \frac{1}{3} \left( 4 - {\sqrt[3]{45 \sqrt{-3} - 28}} - \frac{19}{\sqrt[3]{45 \sqrt{-3} - 28}} \right) [/tex]
[tex]x_1 = \frac{1}{3} \left( \left( \frac{\sqrt[3]{45 \sqrt{-3} - 28}}{\sqrt[3]{45 \sqrt{-3} - 28}} \right) 4 - \left( \frac{\sqrt[3]{45 \sqrt{-3} - 28}}{\sqrt[3]{45 \sqrt{-3} - 28}} \right) {\sqrt[3]{45 \sqrt{-3} - 28}} - \frac{19}{\sqrt[3]{45 \sqrt{-3} - 28}} \right) [/tex]
[tex]x_1 = \frac{1}{3}\frac{1}{\sqrt[3]{45 \sqrt{-3} - 28}} \left( 4\sqrt[3]{45 \sqrt{-3} - 28} - \left( 45 \sqrt{-3} - 28 \right) - 19 \right)[/tex]
[tex]x_1 = \frac{1}{3\sqrt[3]{45 \sqrt{-3} - 28}} \left( 4\sqrt[3]{45 \sqrt{-3} - 28} - 45 \sqrt{-3} + 9 \right) [/tex]