Page 1 of 1

Vis at

Posted: 03/11-2011 16:16
by Integralen
Oppgave 9.1.22

La [tex]\: I_{n } \: =\int sin^{n}(x) dx[/tex]

a) Vis at [tex]\: I_{n}=I_{n-2}- \int sin^{n-2}(x)cos^2(x) dx[/tex]

Prøver å tenke slik:

Hva må:
[tex]v^\prime(x)[/tex]

[tex]u(x)[/tex]

[tex]v(x)[/tex]

[tex]u^\prime(x)[/tex]

være ?

Anyone?

På forhånd takk!

Posted: 03/11-2011 16:21
by Janhaa
hint

[tex]\cos^2(x)=1-\sin^2(x)[/tex]

Posted: 03/11-2011 16:40
by Integralen
[tex]\int \frac{sin^{n}(x)}{sin^{2}(x)} dx-\int \frac{sin^{n}(x)}{sin^{2}(x)} dx+\int sin^{n}(x) dx=I_{n}[/tex]

Q.E.D

Posted: 03/11-2011 16:55
by Janhaa
Integralen wrote:[tex]\int \frac{sin^{n}(x)}{sin^{2}(x)} dx-\int \frac{sin^{n}(x)}{sin^{2}(x)} dx+\int sin^{n}(x) dx=I_{n}[/tex]
Q.E.D
tja, jeg mente vel noe sånt...

[tex]I_n=I_{n-2}\,-\,\int\sin^{n-2}(x)\left(1-\sin^2(x)\right)\,dx[/tex]

[tex]I_n=I_{n-2}\,-\,\int\sin^{n-2}(x)\,dx\,+\,\int\sin^n(x)\,dx[/tex]

[tex]I_n=I_{n-2}\,-I_{n-2}\,+\int\sin^n(x)\,dx[/tex]

Posted: 03/11-2011 18:33
by Integralen
Ja, riktig det, jeg bare skrev det litt annerledes. :)