Page 1 of 1

Logaritmer

Posted: 25/01-2012 15:17
by Kork
Mens jeg leste en post her kom jeg til å tenke på logaritmer, og hvordan de egentlig fungerer. Er det noen som har en god link eller forklaring til meg?

Jeg har ikke problemer med definisjonen / den vanlige forklaringen, eller å regne med logaritmer, men jeg forstår ikke hva som egentlig skjer.

Jeg vil tro at veldig mange andre har det på akkurat samme måten. :o

Posted: 25/01-2012 16:49
by 2357
Nå er jeg ikke sikker på nøyaktig hva du siktert til, men kanskje det hjelper med Lindstrøms forklaring av hvordan de briggske logartimene ble regnet ut første gang.

http://www.youtube.com/watch?v=F7fY6wZJguI

Posted: 26/01-2012 10:19
by Kork
Jeg fant en intravenøs forklaring og jeg ser nå hvorfor vi kan løse eksponentlikninger når grunntallet f.eks. er 10 og vi har en liste med logaritmer til dette grunntallet.

[tex]$${10^x} = 100$$[/tex]

[tex]$$x = {\log _{10}}100$$[/tex]



Men når grunntallet ikke er 10 og vi ikke har listen så må vi bruke logaritmene vi har for grunntallet 10 og på magisk vis finne logaritmen med f.eks. grunntallet 5 for tallet 100:

[tex]$${5^x} = 100$$[/tex]

[tex]$$x = {\log _5}100 = \frac{{{{\log }_{10}}100}}{{{{\log }_{10}}5}}$$[/tex]

Hvorfor fungerer denne magien?

Posted: 26/01-2012 11:11
by Eksplisitt
[tex]a^x=b[/tex]
Av definisjonen av logaritmen følger det at[tex]x=\log_a(b)[/tex].

[tex]a^x=b[/tex]
[tex]\log_c(a^x)=\log_c(b)[/tex]
[tex]x\log_c(a)=\log_c(b)[/tex]
[tex]x=\frac{\log_c(b)}{\log_c(a)}[/tex]

Altså er [tex]\log_a(b)=\frac{\log_c(b)}{\log_c(a)}[/tex]

Posted: 26/01-2012 11:14
by Nebuchadnezzar
Du kan jo prøve å vise det selv! Spesielt vanskelig er det ikke.

Du skal vise at

[tex]\log_a(b) == \frac{\log_{c}(b)}{\log_{c}(a)}[/tex]

Gjelder for alle naturlige tall
Du kan for eksempel opphøye begge sider i a, og leke deg litt med potensregler. Husk at

[tex]a^{\log_a(g(x))} = g(x)[/tex] Som kommer rett fra definisjonen, og at

[tex]p^{m/n} = \left( p^{m} \right)^{1/n} = \left( p^{1/n} \right)^m [/tex]

Posted: 26/01-2012 12:32
by Kork
Jej i did it! Takk skal du ha :D