Faseplan - existence and uniqueness
Posted: 31/01-2012 22:53
Hei.
Jeg er litt usikker på noen formuleringer i tekstboken min angående existence and uniqueness i faseplanet. I boken står det:
Consider the general autonomous first-order system
[tex]x^\prime = X(x,y)[/tex]
[tex]y^\prime = Y(x,y)[/tex] (2.1)
The appropriate form for the initial conditions of this is
[tex]x = x_0[/tex], [tex]y = y_0[/tex] at [tex]t = t_0[/tex] (2.2)
where [tex]x_0[/tex] and [tex]y_0[/tex] are the initial values at time [tex]t_0[/tex]; by the existence and uniqueness theorem (Appendix A) there is one and only one solution satisfying this condition when [tex](x_0, y_0)[/tex] is an "ordinary point". This does not at once mean that there is one and only one phase path through the point [tex](x_0, y_0)[/tex] on the phase diagram, because the same point could serve as the initial conditions for other starting times. Therefore it might seem that other phase paths through the same point could result: the phase diagram would be a tangle of criss-crossed curves. We may see that this is not so by forming the differential equation for the phase paths. Since [tex]\frac{y^\prime}{x^\prime} = \frac{dy}{dx}[/tex] on a path the required equation is
[tex]\frac{dy}{dx} = \frac{Y(x,y)}{X(x,y)}[/tex] (2.3)
Litt senere står det som følger:
Points where the right hand side of (2.3) satisfy the conditions for regularity (Appendix A) are called the oridinary points of (2.3). There is one and only one phase path through any ordinary point [tex](x_0, y_0)[/tex], no matter what time [tex]t_0[/tex] the point [tex](x_0, y_0)[/tex] is encountered. Therefore infinitely many solutions of (2.1), differing only by time displacements, produce the same phase path.
OK, så jeg henger ikke litt med her. Først virker det som at boken sier at (2.2) vil kun ha en bestemt løsning, men at flere phase paths kan passere gjennom samme punkt. Senere skrives det så at "there is one and only one phase path through any ordinary point". Dette forvirrer meg litt. Hvorfor skriver boken først at flere kurver kan passere gjennon punktet, for så å skrive at de ikke kan det?
Setter veldig stor pris på om noen kan forklare dette for meg!
Jeg er litt usikker på noen formuleringer i tekstboken min angående existence and uniqueness i faseplanet. I boken står det:
Consider the general autonomous first-order system
[tex]x^\prime = X(x,y)[/tex]
[tex]y^\prime = Y(x,y)[/tex] (2.1)
The appropriate form for the initial conditions of this is
[tex]x = x_0[/tex], [tex]y = y_0[/tex] at [tex]t = t_0[/tex] (2.2)
where [tex]x_0[/tex] and [tex]y_0[/tex] are the initial values at time [tex]t_0[/tex]; by the existence and uniqueness theorem (Appendix A) there is one and only one solution satisfying this condition when [tex](x_0, y_0)[/tex] is an "ordinary point". This does not at once mean that there is one and only one phase path through the point [tex](x_0, y_0)[/tex] on the phase diagram, because the same point could serve as the initial conditions for other starting times. Therefore it might seem that other phase paths through the same point could result: the phase diagram would be a tangle of criss-crossed curves. We may see that this is not so by forming the differential equation for the phase paths. Since [tex]\frac{y^\prime}{x^\prime} = \frac{dy}{dx}[/tex] on a path the required equation is
[tex]\frac{dy}{dx} = \frac{Y(x,y)}{X(x,y)}[/tex] (2.3)
Litt senere står det som følger:
Points where the right hand side of (2.3) satisfy the conditions for regularity (Appendix A) are called the oridinary points of (2.3). There is one and only one phase path through any ordinary point [tex](x_0, y_0)[/tex], no matter what time [tex]t_0[/tex] the point [tex](x_0, y_0)[/tex] is encountered. Therefore infinitely many solutions of (2.1), differing only by time displacements, produce the same phase path.
OK, så jeg henger ikke litt med her. Først virker det som at boken sier at (2.2) vil kun ha en bestemt løsning, men at flere phase paths kan passere gjennom samme punkt. Senere skrives det så at "there is one and only one phase path through any ordinary point". Dette forvirrer meg litt. Hvorfor skriver boken først at flere kurver kan passere gjennon punktet, for så å skrive at de ikke kan det?
Setter veldig stor pris på om noen kan forklare dette for meg!