Page 1 of 1
Arealsetningen
Posted: 11/03-2012 14:10
by mattefreak95
I trekanten ABC er arealet 15,2 cm2. AB=5,6 cm og vinkel A=53,2 grader. Finn AC.
I følge fasiten skal AC=6,8 cm. Hvordan regner jeg meg frem til dette?
Hjeeelp....
Posted: 11/03-2012 14:21
by Nebuchadnezzar
Arealsetningen sier jo at
[tex]\text{Areal} \, = \, \frac{1}{2} \, \cdot \, \text{AB} \, \cdot \, \text{AC} \, \cdot \, \sin(A)[/tex]
Og her har du alle størrelsene untatt [tex]\text{AC}[/tex], så alt du trenger gjøre er snu formelen med tanke på [tex]\text{AC}[/tex] og sette inn tallene dine
=)
Posted: 11/03-2012 14:22
by fuglagutt
[tex]\frac {1}{2}(sin (BAC))(AB)(AC) = Areal[/tex]
Altså to sider og vinkelen mellom dem.
Ser du hvordan du kan bruke dette til å finne den siste siden?
Posted: 11/03-2012 14:29
by mattefreak95
Haha, dette er flaut, men jeg ser det ikke..... Vet godt hvordan arealsetningen er, men klarer ikke snu den riktig i denne oppgaven.
Posted: 11/03-2012 14:41
by Nebuchadnezzar
Hvor langt har du kommet da?
Husk at så lenge du ikke deler å null, så kan du gjøre hva du vil, så lenge du gjør det på begge sider.
Så om du for eksempel har
[tex]a \, = \, \frac{1}{2} \, \cdot \, b \, \cdot \, c \, \cdot d [/tex]
Og ønsker å få [tex]c[/tex] alene, så kan vi først gange med [tex]2[/tex] på begge sider.
[tex]2 \, \cdot \, a \, = \, 2 \,\cdot \, \frac{1}{2} \, \cdot \, b \, \cdot \, c \, \cdot d [/tex]
[tex]2a \, = \, b \, \cdot \, c \, \cdot d [/tex]
Så kan vi gange med [tex]1/b[/tex] på begge sider (Eller dele med [tex]b[/tex])
[tex]\frac{\,2a\,}{b} \, = \, \frac{ \, b \, \cdot \, c \, \cdot d \, }{b} [/tex]
[tex]\frac{\,2a\,}{b} \, = \, c \, \cdot d [/tex]
Og dersom vi nå ganger med [tex]1/d[/tex] på begge sider får vi [tex]c[/tex] helt mutters alene på høyre side.
[tex]\frac{1}{d} \, \cdot \, \frac{\,2a\,}{b} \, = \frac{1}{d} \, \cdot \, c \, \cdot d [/tex]
[tex]\frac{\,2a\,}{db} \, = \, c[/tex]