Mer induksjon
Posted: 26/08-2012 19:03
[tex]$${Bruk\;induksjon\;til\;{\aa}\;vise\;at \cr 1 + {3^1} + {3^2} + \cdots {3^n} = {{{3^{n + 1}} - 1} \over 2}\;\;for\;n \ge \;0. \cr} $$[/tex]
[tex]$${Utregning: \cr Formulerer\;\det te\;som\;et\;{\aa}pent\;utsagn \cr U\left( n \right):\;\;1 + {3^1} + {3^2} + \cdots {3^n} = {{{3^{n + 1}} - 1} \over 2}\;\;for\;n \ge \;0. \cr} $$[/tex]
[tex]$${Vi\;starter\;med\;{\aa}\;etablere\;induksjonsgrunnlaget.\;\;Vi\;setter\;n = 0\;i\;utsagnet\;og\;f{\aa}r \cr U\left( 0 \right):\;\;{3^0} = {{{3^{0 + 1}} - 1} \over 2} \Leftrightarrow 1 = 1\;som\;er\;et\;sant\;utsagn. \cr} $$[/tex]
[tex]$${Deretter\;sjek\ker \;vi\;induksjonstrinnet.\;Vi\;setter\;n = k\;og\;f{\aa}r: \cr U\left( k \right):\;\;1 + {3^1} + {3^2} + \cdots {3^k} = {{{3^{k + 1}} - 1} \over 2}\;\;for\;k \ge \;0. \cr} $$[/tex]
[tex]$${S{\rm{{\aa}}}\;setter\;vi\;n = k + 1\;og\;f{\rm{{\aa}}}r \cr U\left( {k + 1} \right):\;\;1 + {3^1} + {3^2} + \cdots + {3^{\left( {k + 1} \right)}} = {{{3^{\left( {k + 1} \right) + 1}} - 1} \over 2} = \underline {{{{3^{k + 2}} - 1} \over 2}} \cr} $$[/tex]
[tex]$${N{\aa}\;skal\;vi\;\underline {anta} \;at\;U\left( k \right)\;er\;sant,\;og\;unders{\o}ke\;om\;\det te\;f{\o}rer\;til\;at\;ogs{\aa}\;U\left( {k + 1} \right)\;er\;sant. \cr Vi\;mer\ker \;oss\;at\;venstre\;side\;i\;U\left( {k + 1} \right)\;kan\;skrives \cr 1 + {3^1} + {3^2} + \cdots + {3^k} + {3^{\left( {k + 1} \right)}},\;\;\;der\;{3^{\left( {k + 1} \right)}} \Leftrightarrow {3^k} \cdot {3^1}$$[/tex]
[tex]$${S{\aa}\;\underline {forutsetter} \;U\left( k \right)\;er\;sant.\;Venstre\;side\;av\;U\left( {k + 1} \right)\;kan\;da\;omformes\;slik: \cr \underbrace {1 + {3^1} + {3^2} + \cdots {3^k}}_{ = {{{3^{k + 1}} - 1} \over 2}} + {3^{\left( {k + 1} \right)}} = {{{3^{k + 1}} - 1} \over 2} + {3^{\left( {k + 1} \right)}} = {{{3^{k + 1}} - 1 + 2 \cdot {3^{k + 1}}} \over 2} = \underline {{{{3^{k + 2}} - 1} \over 2}} $$[/tex]
[tex]$$\underline{\underline {Ved\;induksjon\;f{\o}\lg er\;\det \;at\;U\left( n \right)\;er\;sann\;for\;alle\;n \ge 0.}} $$[/tex]
Kilde: ansatte.uit.no/bda006/MatteNotater/LogikkMengder/Induksjonsbevis.pdf
[tex]$${Utregning: \cr Formulerer\;\det te\;som\;et\;{\aa}pent\;utsagn \cr U\left( n \right):\;\;1 + {3^1} + {3^2} + \cdots {3^n} = {{{3^{n + 1}} - 1} \over 2}\;\;for\;n \ge \;0. \cr} $$[/tex]
[tex]$${Vi\;starter\;med\;{\aa}\;etablere\;induksjonsgrunnlaget.\;\;Vi\;setter\;n = 0\;i\;utsagnet\;og\;f{\aa}r \cr U\left( 0 \right):\;\;{3^0} = {{{3^{0 + 1}} - 1} \over 2} \Leftrightarrow 1 = 1\;som\;er\;et\;sant\;utsagn. \cr} $$[/tex]
[tex]$${Deretter\;sjek\ker \;vi\;induksjonstrinnet.\;Vi\;setter\;n = k\;og\;f{\aa}r: \cr U\left( k \right):\;\;1 + {3^1} + {3^2} + \cdots {3^k} = {{{3^{k + 1}} - 1} \over 2}\;\;for\;k \ge \;0. \cr} $$[/tex]
[tex]$${S{\rm{{\aa}}}\;setter\;vi\;n = k + 1\;og\;f{\rm{{\aa}}}r \cr U\left( {k + 1} \right):\;\;1 + {3^1} + {3^2} + \cdots + {3^{\left( {k + 1} \right)}} = {{{3^{\left( {k + 1} \right) + 1}} - 1} \over 2} = \underline {{{{3^{k + 2}} - 1} \over 2}} \cr} $$[/tex]
[tex]$${N{\aa}\;skal\;vi\;\underline {anta} \;at\;U\left( k \right)\;er\;sant,\;og\;unders{\o}ke\;om\;\det te\;f{\o}rer\;til\;at\;ogs{\aa}\;U\left( {k + 1} \right)\;er\;sant. \cr Vi\;mer\ker \;oss\;at\;venstre\;side\;i\;U\left( {k + 1} \right)\;kan\;skrives \cr 1 + {3^1} + {3^2} + \cdots + {3^k} + {3^{\left( {k + 1} \right)}},\;\;\;der\;{3^{\left( {k + 1} \right)}} \Leftrightarrow {3^k} \cdot {3^1}$$[/tex]
[tex]$${S{\aa}\;\underline {forutsetter} \;U\left( k \right)\;er\;sant.\;Venstre\;side\;av\;U\left( {k + 1} \right)\;kan\;da\;omformes\;slik: \cr \underbrace {1 + {3^1} + {3^2} + \cdots {3^k}}_{ = {{{3^{k + 1}} - 1} \over 2}} + {3^{\left( {k + 1} \right)}} = {{{3^{k + 1}} - 1} \over 2} + {3^{\left( {k + 1} \right)}} = {{{3^{k + 1}} - 1 + 2 \cdot {3^{k + 1}}} \over 2} = \underline {{{{3^{k + 2}} - 1} \over 2}} $$[/tex]
[tex]$$\underline{\underline {Ved\;induksjon\;f{\o}\lg er\;\det \;at\;U\left( n \right)\;er\;sann\;for\;alle\;n \ge 0.}} $$[/tex]
Kilde: ansatte.uit.no/bda006/MatteNotater/LogikkMengder/Induksjonsbevis.pdf