Page 1 of 1

Nullpunkt til en funksjon

Posted: 19/10-2005 22:03
by snuppeline
Jeg plages - igjen!!
Hvis jeg har funksjonen f(x)=X^3+2X^2-5X-6
så finner jeg ut av grafen at nullpunktene blir -3, -1, -6 og 2. Men det skal gå an å finne ut av nullpunktene uten å se på graqfen, men HVORDAN??
Er ikke så sterk i matte nei....

Posted: 19/10-2005 22:47
by LGO
Hvordan har du fått løsningen -6? En tredjegradsfunksjon kan ikke ha mer enn 3 nullpunkter. Du kan finne løsningene ved å sette funksjonen lik null, og regne ut tredjegradslikningen.
Altså:
x[sup]3[/sup]+2x[sup]2[/sup]-5x-6 = 0

Posted: 19/10-2005 22:54
by Solar Plexsus
Du kan finne nullpunktene ved å løse tredjegradslikningen x[sup]3[/sup] + 2x[sup]2[/sup] - 5x - 6 = 0. Formlene for løsningen av en tredjegradslikning er imidlertid ganske kompliserte. Disse formlene er innebygd i mange av de mer avanserte kalkulatorene.

I dette tilfelle der koeffisientene (dvs. konstantleddet og tallene foran x-leddene) i likningen alle er heltall, kan man finne alle heltallsløsninger ved å prøve ut alle heltall som er en faktor til konstantleddet -6, dvs. de heltall n som gjør at -6/n blir et heltall. Aktuelle kandidater for heltallige nullpunkt blir dermed +/-1, +/-2, +/-3 og +/-6. Setter du disse 8 heltallene inn i den opprinnelige tredjegradslikningen, vil du finne at -3, -1 og 2 er løsninger av likningen.

Posted: 20/10-2005 12:00
by snuppeline
Den forklaringen tok jeg! Nå skjønner jeg! Takker igjen. for et lykketreff at jeg har funent disse sidene!