Page 1 of 1

Sfærisk trekant

Posted: 13/09-2012 18:30
by malef
La A, B og C være vinklene i en sfærisk trekant.

Vis at 180°<A+B+C<540°.


[tex]\left(\frac{A+B+C}{180^{\circ}}-1\right) \cdot \pi r^2=T \\ \left(\frac{A+B+C-180^{\circ}}{180^{\circ}}\right) \cdot \pi r^2=T \\ A+B+C-180^{\circ}=\frac{180^{\circ} \cdot T}{\pi r^2} \\ A+B+C=\frac{180^{\circ} \cdot T}{\pi r^2}+180^{\circ} \\ A+B+C=\frac{\pi \cdot T}{\pi r^2}+180^{\circ} \\ A+B+C=\frac{T}{r^2}+180^{\circ}[/tex]

Jeg forutsetter at [tex]\frac{T}{r^2}[/tex] må være et positivt tall. I så fall er det bevist at A+B+C er større enn 180°. Er dette beviset ok?

Hvordan kan jeg vise at A+B+C må være mindre enn 540°?