Page 1 of 2
Bunnpunkt eller ikke?
Posted: 30/01-2013 18:15
by damc
Hei
Kan man regne med starten på funksjon å være et bunnpunkt eller ikke når definisjonsmengden er oppgitt for grafen. For eksempel denne:
Her direkte link hvis den ovenfor ikke virker:
http://i46.tinypic.com/29oik5d.jpg
Posted: 30/01-2013 18:44
by MrHomme
Nei det er ikke et bunnpunkt

Du ser jo at grafen fortsetter nedover i negativ x-retning

Posted: 30/01-2013 19:04
by damc
MrHomme wrote:Nei det er ikke et bunnpunkt

Du ser jo at grafen fortsetter nedover i negativ x-retning

Homme: Tenk at du bare hadde en del av grafen, les det som står over grafen, altså at definisjonsmengden til grafen var oppgitt i oppgaven. Da ville ikke x ha gått nedover i negativ retning. Skjønner du nå, og ja jeg vet at det ikke er noen bunnpunkt når Df ikke er oppgitt og at grafen da strekker seg ut i det uendelige!!!
Posted: 30/01-2013 20:26
by MrHomme
Selv om det foreligger en defnisjonsmengde, så er det fortsatt gitte bunnpunkter og toppunkter til funksjonen. Altså, selv om du har definisjonsmengde, vil ikke punktet du har markert på grafen være et bunnpunkt til funksjonen. Definisjonsmengden sier bare noe om hvilke topp- og bunnpunkter funksjonen har innenfor et definert x-verdi intervall.
Posted: 30/01-2013 21:27
by Vektormannen
Jo, det punktet du har markert er et bunnpunkt (et lokalt bunnpunkt). Hvis definisjonsmengden er lukket eller halvåpen så vil endepunktene faktisk alltid være ekstremalpunkter.
Mange tenker at definisjonen av bunnpunkt er at den deriverte skal være 0. Dette er ikke riktig. Det omvendte er riktig: hvis vi har et bunnpunkt, så er den deriverte 0. Det finnes også andre tilfeller der vi har bunnpunkter, som det er her i dette tilfellet. Definisjonen av bunnpunkt er at vi kan lage oss et intervall som inneholder punktet og så skal funksjonsverdien der være mindre eller lik funksjonsverdien i alle andre punkt i intervallet.
Dette er dessverre en definisjon som noen av skolebøkene (eller alle?) ikke nevner. Men jeg husker godt at det var en R2-eksamen der man faktisk måtte inkludere endepunktene.
Posted: 31/01-2013 18:35
by Audunss
Vektormannen wrote:
Mange tenker at definisjonen av bunnpunkt er at den deriverte skal være 0. Dette er ikke riktig. Det omvendte er riktig: hvis vi har et bunnpunkt, så er den deriverte 0.
Er ikke dette det samme? Og ingen av veiene stemmer vell, bunnpunkt impliserer ikke at den deriverte er 0, og at den deriverte er 0 impliserer ikke bunnpunkt.
Posted: 31/01-2013 19:00
by Aleks855
Audunss wrote:Vektormannen wrote:
Mange tenker at definisjonen av bunnpunkt er at den deriverte skal være 0. Dette er ikke riktig. Det omvendte er riktig: hvis vi har et bunnpunkt, så er den deriverte 0.
Er ikke dette det samme? Og ingen av veiene stemmer vell, bunnpunkt impliserer ikke at den deriverte er 0, og at den deriverte er 0 impliserer ikke bunnpunkt.
Jo og delvis.
Bunnpunkt impliserer derivert=0.
Derivert=0 impliserer bunnpunkt ELLER toppunkt.
Posted: 31/01-2013 20:00
by Vektormannen
Nei, bunnpunkt impliserer ikke at den deriverte er 0! For eksempel er punktet i endepunktet av intervallet på grafen øverst her et bunnpunkt, men den deriverte er ikke 0. Men hvis vi vet at den deriverte er 0, så må punktet være et ekstremalpunkt.
Posted: 31/01-2013 20:03
by Aleks855
Vektormannen wrote:Nei, bunnpunkt impliserer ikke at den deriverte er 0! For eksempel er punktet i endepunktet av intervallet på grafen øverst her et bunnpunkt, men den deriverte er ikke 0. Men hvis vi vet at den deriverte er 0, så må punktet være et ekstremalpunkt.
Min feil. Jeg tok utgangspunkt i en funksjon definert på R. Fikk ikke med meg at det var et begrenset intervall

Posted: 31/01-2013 20:09
by Audunss
Vektormannen wrote:Nei, bunnpunkt impliserer ikke at den deriverte er 0! For eksempel er punktet i endepunktet av intervallet på grafen øverst her et bunnpunkt, men den deriverte er ikke 0. Men hvis vi vet at den deriverte er 0, så må punktet være et ekstremalpunkt.
Hva med funksjonen f(x)=x^3? Ellers alle andre funksjoner med sadelpunkt, motbeviser det.
At funksjonen har et bunnpunkt et sted, impliser ikke engang at den er deriverbar i punktet, f.eks f(x)=|x|
Posted: 31/01-2013 20:20
by Vektormannen
Audunss wrote:Vektormannen wrote:Nei, bunnpunkt impliserer ikke at den deriverte er 0! For eksempel er punktet i endepunktet av intervallet på grafen øverst her et bunnpunkt, men den deriverte er ikke 0. Men hvis vi vet at den deriverte er 0, så må punktet være et ekstremalpunkt.
Hva med funksjonen f(x)=x^3? Ellers alle andre funksjoner med sadelpunkt, motbeviser det.
Det var en unøyaktighet fra min side. Jeg glemte å si at hvis den deriverte er 0
og den deriverte skfiter fortegn, så har den et ekstremalpunkt.
At funksjonen har et bunnpunkt et sted, impliser ikke engang at den er deriverbar i punktet, f.eks f(x)=|x|
Det er et godt eksempel på hva jeg mener. At funksjonen har et bunnpunkt impliserer ikke at den deriverte er 0, eller som du sier, at den deriverte i det hele tatt eksisterer. Hvis vi tar det som definisjon at den deriverte skal være 0 i et bunnpunkt (slik noen skolebøker gjør), vil ikke x = 0 være et bunnpunkt på f(x) = |x|. Men tar vi den definisjonen jeg nevnte øverst her, så vil x = 0 være et bunnpunkt.
Posted: 31/01-2013 21:10
by Audunss
Vektormannen wrote:Audunss wrote:Vektormannen wrote:Nei, bunnpunkt impliserer ikke at den deriverte er 0! For eksempel er punktet i endepunktet av intervallet på grafen øverst her et bunnpunkt, men den deriverte er ikke 0. Men hvis vi vet at den deriverte er 0, så må punktet være et ekstremalpunkt.
Hva med funksjonen f(x)=x^3? Ellers alle andre funksjoner med sadelpunkt, motbeviser det.
Det var en unøyaktighet fra min side. Jeg glemte å si at hvis den deriverte er 0
og den deriverte skfiter fortegn, så har den et ekstremalpunkt.
At funksjonen har et bunnpunkt et sted, impliser ikke engang at den er deriverbar i punktet, f.eks f(x)=|x|
Det er et godt eksempel på hva jeg mener. At funksjonen har et bunnpunkt impliserer ikke at den deriverte er 0, eller som du sier, at den deriverte i det hele tatt eksisterer. Hvis vi tar det som definisjon at den deriverte skal være 0 i et bunnpunkt (slik noen skolebøker gjør), vil ikke x = 0 være et bunnpunkt på f(x) = |x|. Men tar vi den definisjonen jeg nevnte øverst her, så vil x = 0 være et bunnpunkt.
Da skal det stemme ja, såvidt jeg ser det

vertfall om vi holder oss i R, og ikke går i R^n
Posted: 31/01-2013 21:36
by Vektormannen
Vi er da tross alt i VGS-forumet

Posted: 31/01-2013 21:51
by Audunss
Vektormannen wrote:Vi er da tross alt i VGS-forumet

Detaljer

Og tror ingen som fulgte med på slutten av debatten holder til på vgs

Posted: 31/01-2013 22:26
by damc
Audunss wrote:Vektormannen wrote:Vi er da tross alt i VGS-forumet

Detaljer

Og tror ingen som fulgte med på slutten av debatten holder til på vgs

Takk for bekreftelsen vektormannen!