Page 1 of 1

integral

Posted: 27/02-2013 18:47
by Integralen
Oppgave 9.4.20
Løs

[tex]\int \frac{7cos(x)+4sin(x)}{cos(x)+2sin(x)}dx[/tex]

ved å substituere [tex]\:u=tan(x) \:[/tex].


Skal man omskrive dette integralet slik at man får tan(x) i integranden så man kan bruke u? Hvis ja: Hvordan?

På forhånd takk! :)

Posted: 27/02-2013 18:49
by Janhaa
del på cos(x)

[tex]I=\int\frac{7+4\tan(x)}{1+2\tan(x)}\,dx[/tex]


edit

Posted: 27/02-2013 19:05
by Integralen
Det var slik jeg gjorde og da stoppet jeg opp når jeg fant ut at:

[tex]du=\frac{1}{cos^2(x)}dx[/tex]

Stopper opp her, vet ikke hvordan det nye integralet blir pga dette, hvordan blir det?

Posted: 27/02-2013 19:09
by Janhaa
Integralen wrote:Det var slik jeg gjorde og da stoppet jeg opp når jeg fant ut at:
[tex]du=\frac{1}{cos^2(x)}dx[/tex]
Stopper opp her, vet ikke hvordan det nye integralet blir pga dette, hvordan blir det?
husk at

[tex](\tan(x))^,=1+\tan^2(x)[/tex]

Posted: 27/02-2013 19:11
by Janhaa
Janhaa wrote:del på cos(x)
[tex]I=\int\frac{7+4\tan(x)}{1+2\tan(x)}\,dx[/tex]
så blir dette:

[tex]I=\int\frac{7+4u}{(1+2u)(1+u^2)}\,du[/tex]

så delbrøksoppspalt. etc...


edit

Posted: 27/02-2013 19:18
by Integralen
jajjaman! :wink: