Page 1 of 1

Polynomdivisjon

Posted: 27/10-2013 21:37
by mattelurer
Hei!
Har en oppgave jeg sliter litt med:

[tex](x^3-2x^2-x+2)/(x+1)[/tex]


Hvordan er fremgangmetoden på å få faktorisert ned dette, noen som har noen gode tips eller fremgangsmetoder jeg kan benytte meg av ?

Re: Polynomdivisjon

Posted: 27/10-2013 22:58
by Aleks855
Har en del videoer om polynomdivisjon i spillelista her: http://udl.no/matematikk/algebra

Der får du se fremgangsmåte, som du kan bruke på din oppgave ;)

Re: Polynomdivisjon

Posted: 28/10-2013 17:36
by mattelurer
Takk!
Da raste jeg igjennom oppgaver, men stopper litt opp på en her:

[tex]x^4-x^2+x+1/(x-1)[/tex]

Jeg regner meg frem til da:

[tex]x^4-x^2+x+1 /(x-1)= x^3+x^2 +1[/tex]
[tex]-(x^4-x^3 )[/tex]
[tex]x^3-x^2+x+1[/tex]
[tex]-(x^3-x^2)[/tex]
[tex]x+1[/tex]

Hva gjør jeg nå?

Re: Polynomdivisjon

Posted: 31/10-2013 11:06
by mattelurer
bump :)

Re: Polynomdivisjon

Posted: 31/10-2013 12:46
by Aleks855
Prøv å sette inn ledd der de mangler. Altså kan du skrive $x^4+0x^3-x^2+0x+1 : (x-1)$. Dette har en tendens til å hjelpe, da mange adderer og subtraherer feil ledd hvis det mangler slike.

Re: Polynomdivisjon

Posted: 31/10-2013 17:22
by mattelurer
Prøvde dette og endte opp med:

x^4+0x^3-x^2+x+1 ∶(x-1) = x^3-x^2+1
-(x^4-x^3 )
(-x^3-x^2)
-(-x^3-x^2)
x+1
-(x-1)
-1

Re: Polynomdivisjon

Posted: 31/10-2013 17:43
by mattelurer
Ok, en gang til:

x^4+0x^3-x^2+x+1 ∶(x-1) = x^3-x^2+1
-(x^4-x^3 )
x^3-x^2+x+1
-(-x^3-x^2 )+x+1
x+1
-(x-1)
2




hmmm ?

Re: Polynomdivisjon

Posted: 01/11-2013 15:48
by mattelurer
anyone ?

Re: Polynomdivisjon

Posted: 01/11-2013 16:43
by Zeph
[tex]x^4+0x^3-x^2+x+1:(x-1)=x^3+x^2+1+\frac{2}{(x-1)}[/tex]
[tex]x^4-x^3[/tex]
[tex]0+x^3-x^2[/tex]
[tex]0+x^3-x^2[/tex]
[tex]0+0+0+x+1[/tex]
[tex]0+0+0+x-1[/tex]
[tex]0+0+0+0+2[/tex]

Re: Polynomdivisjon

Posted: 01/11-2013 17:06
by mattelurer
Zeph wrote:[tex]x^4+0x^3-x^2+x+1:(x-1)=x^3+x^2+1+\frac{2}{(x-1)}[/tex]
[tex]x^4-x^3[/tex]
[tex]0+x^3-x^2[/tex]
[tex]0+x^3-x^2[/tex]
[tex]0+0+0+x+1[/tex]
[tex]0+0+0+x-1[/tex]
[tex]0+0+0+0+2[/tex]
Ja, såklart! Stod igjen med 2 og skjønte ikke helt hva jeg skulle gjøre :P Takk!