Jeg har rekken : [tex]\sum_{n=0}^{\infty}(n+2i)^nZ^n[/tex], finn konvergensradius.
Jeg har gjort dette:
[tex]R=\lim_{n \mapsto \infty } |\frac{a_n}{a_{n+1}}|=|\frac{r_1e^{i\omega_1}}{r_2e^{i\omega_2}}|=|\frac{r1}{r2}|=\frac{(n^2+4)^{n/2}}{(n^2+n+5)^{\frac{n+1}{2}}}=1?[/tex]
Med: [tex]r_1=(n^2+4)^{n/2}[/tex], [tex]r_2=((n+1)^2+4)^{\frac{n+1}{2}}[/tex], [tex]\omega_1=\tan(2/n)[/tex],[tex]\omega_2=\tan(\frac{2}{n+1})[/tex]
Men i fasit står det 0, noen som har inspill?
Konvergensradius
Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
Vi får velMattenuub wrote:Jeg har rekken : [tex]\sum_{n=0}^{\infty}(n+2i)^nZ^n[/tex], finn konvergensradius.
Jeg har gjort dette:
[tex]R=\lim_{n \mapsto \infty } |\frac{a_n}{a_{n+1}}|=|\frac{r_1e^{i\omega_1}}{r_2e^{i\omega_2}}|=|\frac{r1}{r2}|=\frac{(n^2+4)^{n/2}}{(n^2+n+5)^{\frac{n+1}{2}}}=1?[/tex]
$\lim_{n\to\infty}\frac{(n^2+4)^{n/2}}{(n^2+2n+5)^{\frac{n+1}{2}}}=\lim_{n\to\infty}\frac{1}{(n^2+2n+5)^{\frac12}}\frac{(n^2+4)^{n/2}}{(n^2+2n+5)^{\frac{n}{2}}}$.
Vi har her at $\lim_{n\to\infty}\frac{(n^2+4)^{n/2}}{(n^2+2n+5)^{\frac{n}{2}}}=\lim_{n\to\infty}(\frac{1+\frac{4}{n^2}}{1+\frac{2}{n}+\frac{5}{n^2}})^{\frac{n}{2}}=\frac{1}{e}$.
Videre er selvsagt $\lim_{n\to\infty}\frac{1}{(n^2+2n+5)^{\frac12}}=0$.
Altså blir grensen 0, og konvergensradien blir 0.