Page 1 of 1

Sannsynlighet

Posted: 26/06-2014 14:16
by pat
Jeg jobber med en R1 oppgave i sannsynlighetsregning og er litt usikker på om fasiten på denne oppgaven kan stemme.

Oppgaven er:
Johann skal smake på 5 forskjellige typer cola i umerkede glass og fortelle hvilken type som er i hvilket glass. Hva er sjansen for at han får alle typene riktig hvis han bare gjetter?

I følge fasiten er svaret 0,83% dvs 1/(5x4x3x2x1)

Jeg mener at svaret må været 1/5^5 dvs 0,032%.

Første cola er 1/5 sjanse da har han riktignok bare 4 colaer igjen og velge i, men for alt han vet kan da den neste colaen være en av de fire som er igjen eller det kan være den første siden han kun gjettet på den. dvs 1/5 også på andre cola. Det samme på de 3 neste. Stemmer ikke dette?

Re: Sannsynlighet

Posted: 26/06-2014 14:58
by Aleks855
Ditt svar er kun rett dersom han kan si det samme svaret flere ganger. Men hvis han gjør det, så får han uansett ikke alle riktig.

Du må tenke på at når han har gitt et svar (eksempelvis Cola Zero), så har han kun 4 andre navn å bruke etterpå.

Re: Sannsynlighet

Posted: 26/06-2014 16:25
by pat
Hei.

Jeg har fortsatt litt vanskelig for å se det. Jeg er enig i at vi bør anta at han ikke gjetter samme cola 2 ganger, men når han da f.eks. står på andre colaglass har han allerede gitt ett svar og kan velge mellom 4 til. Likevel kan glass nummer 2 også være det han gjettet at det var i glass nummer 1 altså 5 muligheter. Med mindre han har fått vite fasiten på hva som var i glass 1 før han gjetter på glass 2 da...

Re: Sannsynlighet

Posted: 26/06-2014 16:43
by ThomasSkas
pat wrote:Hei.

Jeg har fortsatt litt vanskelig for å se det. Jeg er enig i at vi bør anta at han ikke gjetter samme cola 2 ganger, men når han da f.eks. står på andre colaglass har han allerede gitt ett svar og kan velge mellom 4 til. Likevel kan glass nummer 2 også være det han gjettet at det var i glass nummer 1 altså 5 muligheter. Med mindre han har fått vite fasiten på hva som var i glass 1 før han gjetter på glass 2 da...
Jeg skjønner hva du mener her. Men du bør gå ut ifra det Aleks sier, forutsatt at ingen andre viktige opplysninger står i oppgaven.
Denne oppgaven kan sammenliknes med oppgaver der du har en skål med mange kuler som har forskjellige farger. Du vil så trekke ut x stykker, og prøve å få røde på alle forsøkene. Det som da er poenget er at det er uten tilbakelegging som i din oppgave, dvs. at samme element ikke kan velges flere ganger. Så hvis han smaker på en cola, sier Coca Cola original, da har han brukt opp den, og må velge blant de andre alternativene.

Re: Sannsynlighet

Posted: 26/06-2014 20:52
by Lektorn
Det du må huske/tenke er at du skal finne sannsynligheten for at alle 5 svar er rett - ikke tenke på at det første kanskje kan være feil, da vi ikke skal se på den muligheten.
Dvs på første svar så er det ett gunstig svar og fem mulige (P=1/5). Når andre svar skal gis så vet du at første allerede har vært riktig, dvs vi har ett gunstig og fire mulige svar (P=1/4). Osv.

Du kan også regne på en (litt) annen måte. Hvor mange måter kan du gi 5 ulike svar på? Dette blir antall mulige svarkombinasjoner.
Og hvor mange av disse gir 5 rette? Jo det er bare en av alle mulige kombinasjoner.

Re: Sannsynlighet

Posted: 26/06-2014 21:47
by ThomasSkas
Lektorn wrote:Det du må huske/tenke er at du skal finne sannsynligheten for at alle 5 svar er rett - ikke tenke på at det første kanskje kan være feil, da vi ikke skal se på den muligheten.
Dvs på første svar så er det ett gunstig svar og fem mulige (P=1/5). Når andre svar skal gis så vet du at første allerede har vært riktig, dvs vi har ett gunstig og fire mulige svar (P=1/4). Osv.

Du kan også regne på en (litt) annen måte. Hvor mange måter kan du gi 5 ulike svar på? Dette blir antall mulige svarkombinasjoner.
Og hvor mange av disse gir 5 rette? Jo det er bare en av alle mulige kombinasjoner.
[tex]\frac{1}{5!}=\frac{1}{5\cdot 4\cdot 3\cdot 2\cdot 1}=\frac{1}{120}=0.83prosent[/tex]

Re: Sannsynlighet

Posted: 27/06-2014 08:46
by Pat
Ser nå at dere selvfølgelig har helt rett. Takk for hjelpen!