Page 1 of 1

Fysisk pendel

Posted: 19/03-2015 14:58
by k3n
Har en fysisk pendel oppgave som jeg lurer litt på, noen som kan komme med noen tips angående denne? På forhånd takk :)

Oppgave.

En tynn stav med masse m=3,0kg og lengde l=135cm henger rett nedfra et feste. Staven kan rotere uten friksjon om festet.
Ole kaster en snøball med masse m=300g og horisontal fart v0=9m/s mot staven. Snøballen setter seg fast i stavens nedre ende.
Hvor høyt vil staven svinge etter denne kollisjonen?

Re: Fysisk pendel

Posted: 26/03-2015 13:36
by k3n
Ingen med et lite tips?

Re: Fysisk pendel

Posted: 31/03-2015 07:44
by madfro
Bevegelsesmengden må være bevart i kollisjonen...
Hjelper det ?

Re: Fysisk pendel

Posted: 05/04-2015 22:45
by k3n
Absolutt ingenting.
Hva gjør jeg med treghetsmomentet, massesenteret?

Re: Fysisk pendel

Posted: 09/04-2015 21:45
by hallapaadeg
Dårlig at ingen har svart på denne :D Har blitt nysgjerrig. Er ikke dette bare en enkel difflerensialikning da? :D

Re: Fysisk pendel

Posted: 09/04-2015 22:36
by ThomasSkas
Hei,
hva sier fasitsvaret?
Og hvilket kurs er dette? Fysikk 2 eller høyere?

Re: Fysisk pendel

Posted: 10/04-2015 11:13
by madfro
Jeg tror ikke du trenger å ta hensyn til at massesenteret og treghetsmomentet endrer seg, kun at massen øker...
Det er mulig jeg ser litt for enkelt på problemet da, men du kan jo teste hva svaret blir med dette :)

Re: Fysisk pendel

Posted: 10/04-2015 11:48
by Norm
Tror du må gå veien om energibevarelse: [tex]E_{tot} = E_{kin} + E_{pot} = 0.5 * m * v^2 + mgh[/tex], der konstantene er som vanlig. Hvis pendelen er i ro før snøballen treffer, har du bare potensiell energi. Energibevarelse gir at [tex]E_{tot}[/tex] må være bevart. Ser du at høyden før og etter er annerledes, samt at etter kollisjonen kommer det fart, [tex]v[/tex], inn i bildet? Hint: Anta at du har [tex]v_{1}, v_{2}[/tex] og [tex]h_{1}, h_{2}[/tex] og [tex]m_{1}, m_{2}[/tex], ikke nødvendigvis ulik null avhengig av tilstanden.

Re: Fysisk pendel

Posted: 15/04-2015 21:23
by k3n
Hvis ballen løfter seg en høyde h så gjør ikkje staven det helt. Staven roterer, men siden denne har et massepunkt må vi ta hensyn til det. Massecenteret løfter seg h/2. Derfor kan man ikke si at energien til staven når den når toppen er ms*g*h.

Løsningen på problemet vil være

mb*g*h + ms*g*h/2=1/2* mb* v^2

Som vi løser med tanke på h

Men dette var ikkje helt riktig ifølge læreren, da støtet er uelastisk og energien ikkje bevart

Re: Fysisk pendel

Posted: 16/04-2015 18:57
by Norm
Du (og læreren) har rett. Energibevarelse gjelder ikke for uelastiske kollisjoner. Etter å ha sjekket litt på http://home.phys.ntnu.no/brukdef/underv ... slides.pdf ser jeg at generelt gjelder [tex]m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'[/tex]. Hvis man antar at [tex]v_1[/tex] og [tex]m_1[/tex] er farten og massen til snøballen før kollisjonen, og [tex]m_2[/tex] og [tex]v_2 = 0[/tex] er massen og den horisontale farten til pendelen før kollisjonen, får man at siden snøballen sitter fast i pendelen etter kollisjonen at [tex]v_2' = \frac{m_1 v_1}{m_2}[/tex], og da kan jo begynne å regne på kinestisk- og potensiell- energi i det nye snøball/pendel-systemet?