Page 1 of 1

(lg x)^2=9?

Posted: 24/09-2015 18:23
by geoff-peel
Hjelp!
[tex](lgx)^{2}=9[/tex]

:?

Re: (lg x)^2=9?

Posted: 24/09-2015 18:35
by DennisChristensen
geoff-peel wrote:Hjelp!
[tex](lgx)^{2}=9[/tex]

:?
$(\lg x)^2 = 9 \\
\therefore \lg x = ±3$

$\lg x = -3$:

$10^{\lg x} = 10^{-3} \\
\therefore x = \frac{1}{10^3} = \frac{1}{1000}$.

$\lg x = 3$:

$10^{\lg x} = 10^3 \\
\therefore x = 10^3 = 1000$.

Altså får vi løsningene $x_1 = \frac{1}{1000}, x_2 = 1000$

Re: (lg x)^2=9?

Posted: 24/09-2015 18:37
by Guest
geoff-peel wrote:Hjelp!
[tex](lgx)^{2}=9[/tex]

:?
[tex]lgx = \pm \sqrt{9}[/tex]
[tex]x = 10^{-3} \vee x = 10^3[/tex]

Re: (lg x)^2=9?

Posted: 26/09-2015 19:58
by geoff-peel
Takk for hjelpen!

Selvfølgelig, nå føler jeg meg dum :)