Integral - Volum
Posted: 23/10-2015 19:01
Hei!!
Jeg sitter med en gitt problemstilling, som jeg virkelig undres over hvordan jeg skal kunne angripe den.
Den går som følger:
Beregn volumet av området begrenset av [tex]x,y,z\geq 0[/tex], [tex]z=-6x+4[/tex], [tex]z=-9y+6[/tex]
og [tex]z=2[/tex].
Hint: Ved å vurdere horisontale skiver kan du beregne volumet med følgende arealfunksjon
[tex]A(z)=\frac{1}{54}(4-z)(6-z)[/tex]
Ok, så vi har i det siste drevet på med anvendelse av integrasjon, knyttet spesielt til areal og volum.
Videre har vi sett litt på å beregne volumet av et legeme som dreies om y-aksen, som er litt annerledes enn dreining om x-aksen. Men her, slik jeg kan se det, så er det konsentrert om z, som igjen er funksjon av både x og y?
Så legemet er avgrenset av tre plan??
Hva forteller også denne oppgitte arealfunksjonen?
Det jeg pleier å gjøre ihvertfall, det er å tegne opp selve situasjonen, og da blir det som regel slik at problemet blir enklere å løse fordi da får man visualisert det? Men her er jeg helt blank. Jeg skulle ønske jeg kunne bidra med et startpunkt, men her er jeg rett og slett på bar bakke.
Tusen takk for tiden deres. Jeg er veldig interessert i å lære å løse slike problemstillinger.
Jeg sitter med en gitt problemstilling, som jeg virkelig undres over hvordan jeg skal kunne angripe den.
Den går som følger:
Beregn volumet av området begrenset av [tex]x,y,z\geq 0[/tex], [tex]z=-6x+4[/tex], [tex]z=-9y+6[/tex]
og [tex]z=2[/tex].
Hint: Ved å vurdere horisontale skiver kan du beregne volumet med følgende arealfunksjon
[tex]A(z)=\frac{1}{54}(4-z)(6-z)[/tex]
Ok, så vi har i det siste drevet på med anvendelse av integrasjon, knyttet spesielt til areal og volum.
Videre har vi sett litt på å beregne volumet av et legeme som dreies om y-aksen, som er litt annerledes enn dreining om x-aksen. Men her, slik jeg kan se det, så er det konsentrert om z, som igjen er funksjon av både x og y?
Så legemet er avgrenset av tre plan??
Hva forteller også denne oppgitte arealfunksjonen?
Det jeg pleier å gjøre ihvertfall, det er å tegne opp selve situasjonen, og da blir det som regel slik at problemet blir enklere å løse fordi da får man visualisert det? Men her er jeg helt blank. Jeg skulle ønske jeg kunne bidra med et startpunkt, men her er jeg rett og slett på bar bakke.
Tusen takk for tiden deres. Jeg er veldig interessert i å lære å løse slike problemstillinger.