Page 1 of 1
					
				matematikk 4k caucht
				Posted: 24/10-2015 17:57
				by velia
				Avgjør om Cauchy's teorem er anvendelig, uansett integrer.
Eksempel funksjon er f(z)= 1/(z^4-1.2) Kanskje sette z=x+iy. Behøver litt tips.
			 
			
					
				Re: matematikk 4k caucht
				Posted: 25/10-2015 04:48
				by Norm
				Regner med at du forsøker å integrere funksjonen. Cauchys teorem 
[tex]\int_{\partial D} f(z)dz = 0[/tex]
gjelder hvis [tex]f(z)[/tex] er analytisk opp til randen av domenet, [tex]D[/tex]. Du vet hva det vil si at en kompleks funksjoner er analytisk?
			 
			
					
				Re: matematikk 4k caucht
				Posted: 25/10-2015 11:02
				by velia
				Da må den oppfylle caucy-riemannlikningene, men jeg sliter med å bruke dem på denne funksjonen.
			 
			
					
				Re: matematikk 4k caucht
				Posted: 25/10-2015 21:31
				by Gustav
				velia wrote:Avgjør om Cauchy's teorem er anvendelig, uansett integrer.
Eksempel funksjon er f(z)= 1/(z^4-1.2) Kanskje sette z=x+iy. Behøver litt tips.
Kommer an på integrasjonsområdet her. Du må se på hvor singularitetene ligger.