Page 1 of 1
Matte 1T (trenger rask hjelp)
Posted: 01/06-2016 17:49
by marcel
Hei, eg driver å jobbe med munnleg eksamen, og ei av oppgåvene eg valte å ha med er: lg(x+8) = 1
Kunne noen forklart denne til meg med ord, framgangsmåte osv. ? Tusen takk
Re: Matte 1T (trenger rask hjelp)
Posted: 01/06-2016 17:58
by Nebuchadnezzar
Anbefaler deg å se et par videoer her
http://udl.no/p/1t-matematikk/kapittel- ... logaritmer. Da får du en forståelse for hva logaritmer er for noe (noe som er nødvendig får å klare regneoppgavene).
I korte trekk så betyr $\lg x$: "Hvilket tall må jeg opphøye 10 i slik at jeg får x?". Med symboler blir dette $a = \lg x \Leftrightarrow 10^a = x$.
Siden $10^1 = 10$ betyr dette at $\lg 10 = 1$. (Siden jeg må opphøye 10 i 1 for å få 10). Sammenligner jeg med oppgaven din
$\lg 10 = 1$ og $\lg( 8 + x) = 1$ ser jeg at vi må løse likningen $10 = 8 + x$.
========================
En mer mekanisk fremgangsmåte er å opphøye begge sider i 10
$\lg( 8 + x ) = 1$
$ 10^{\lg( 8 + x)} = 10^1$
$8 + x = 10$
Og regningen blir tilsvarende som i sted.
Re: Matte 1T (trenger rask hjelp)
Posted: 01/06-2016 18:02
by Guest
Nebuchadnezzar wrote:Anbefaler deg å se et par videoer her
http://udl.no/p/1t-matematikk/kapittel- ... logaritmer. Da får du en forståelse for hva logaritmer er for noe (noe som er nødvendig får å klare regneoppgavene).
I korte trekk så betyr $\lg x$: "Hvilket tall må jeg opphøye 10 i slik at jeg får x?". Med symboler blir dette $a = \lg x \Leftrightarrow 10^a = x$.
Siden $10^1 = 10$ betyr dette at $\lg 10 = 1$. (Siden jeg må opphøye 10 i 1 for å få 10). Sammenligner jeg med oppgaven din
$\lg 10 = 1$ og $\lg( 8 + x) = 1$ ser jeg at vi må løse likningen $10 = 8 + x$.
========================
En mer mekanisk fremgangsmåte er å opphøye begge sider i 10
$\lg( 8 + x ) = 1$
$ 10^{\lg( 8 + x)} = 10^1$
$8 + x = 10$
Og regningen blir tilsvarende som i sted.
No når eg ser på det skjønner eg at måten eg leste oppgåva på var feil, men tusen takk for hjelpa! Det hjalp