Page 1 of 1

Røtter av imaginære tall, del 2

Posted: 14/01-2006 23:51
by JensK
Dagens oppgave:
Find solutions of z[sup]4[/sup] + 8 = 0, and use your results to factor z[sup]4[/sup] + 8 into two quadratic factors with real coefficients.

Posted: 15/01-2006 01:52
by Solar Plexsus
Faktoriseringsoppgaven kan løses uten å finne fjerdegradslikningens røtter. Vha. av konjungatsetningen får vi nemlig at

z[sup]4[/sup] + 8
= (z[sup]2[/sup] + 2[sup]3/2[/sup])[sup]2[/sup] - 2[sup]5/2[/sup]z[sup]2[/sup]
= (z[sup]2[/sup] + 2[sup]3/2[/sup])[sup]2[/sup] - (2[sup]5/4[/sup]z)[sup]2[/sup]
= (z[sup]2[/sup] - 2[sup]5/4[/sup]z + 2[sup]3/2[/sup])(z[sup]2[/sup] + 2[sup]5/4[/sup]z + 2[sup]3/2[/sup]).

Posted: 15/01-2006 02:35
by Magnus
Hvis du lurer på hvordan du skal finne røttene får du si i fra:) orker ikke gjøre det nå *stuptrøtt*

Posted: 15/01-2006 11:57
by JensK
Candela, jeg kunne gjerne tenkt meg å se hvordan man finner røttene. :P

Posted: 15/01-2006 16:04
by Magnus
du får

z^4 = -8

fjerderøtter har altså 4 løsninger.

-8 = |-8|*e^(pi*i + 2pi*i*k) = 8*(cos[thetta] + i*sin[thetta])

men vi skal ha fjerderøttene.

=1.682*e^((pi*i + 2pi*i*k)/4) = 1.682*(cos[(pi+2pi*k)/4] + i*sin[(pi+2pi*k])/4)

k{0,1,2,3}

k = 0
= 1.682*(Cos[pi/4] + i*sin[pi/4]) = 1.682*(0.707 + i*0.707) =
1.189 + 1.189i

k = 1

= 1.682*(Cos[(pi + 2pi)/4] + i*Sin[(pi + 2pi)/4])
= 1.682*(Cos [3pi/4] + i*Sin[(3pi/4)])
= 1.682*(-0.707 + i*0.707) = -1.189 + 1.189i

k = 2

=1.682*(Cos[(pi + 4pi)/4] + i*Sin[(pi + 4pi)/4])
=1.682*(Cos[5pi/4] + i*Sin[5pi/4])
= 1.682*(-0.707 -0.707i) = -1.189 - 1.189i

k = 3
=1.682*(Cos[(pi + 6pi)/4] + i*Sin[(pi + 6pi)/4])
=1.682*(Cos[7pi/4] + i*Sin[7pi/4])
= 1.682*(0.707 - 0.707i) = 1.189 - 1.189i