Page 1 of 1

terningkast

Posted: 04/01-2017 20:15
by Guest
Hei! Du har seks terninger og kaster dem samtidig. Hva er sannsynligheten for at alle er like?

Re: terningkast

Posted: 04/01-2017 23:26
by Drezky
Gunstige utfall vil være:

[tex]G_1=\left \{ 1,1,1,1,1,1 \right \},G_2=\left \{ 2,2,2,2,2,2 \right \},G_3=\left \{ 3,3,3,3,3,3 \right \}...G_6=\left \{ 6,6,6,6,6,6 \right \}[/tex]

[tex]6*\left ( \frac{1}{6} \right )^6=\left ( \frac{1}{6} \right )^5=\frac{1}{7776}[/tex]


Eller :

[tex]P=\frac{G}{M}[/tex]

[tex]M=6^6[/tex]

[tex]G=\binom{6}{1}[/tex]

[tex]P=\frac{G}{M}=\frac{\binom{6}{1}}{6^6}=\frac{1}{7776}[/tex]

Re: terningkast

Posted: 07/01-2017 12:38
by Guest
Hei

Og sannsynligheten for at alle terningene viser FEM øyne?

Re: terningkast

Posted: 07/01-2017 12:41
by Guest
Men 6^6 er vel ikke 7776...?

Re: terningkast

Posted: 07/01-2017 13:24
by Aleks855
Gjest wrote:Men 6^6 er vel ikke 7776...?
Men $6^5$ er det.

Re: terningkast

Posted: 07/01-2017 13:27
by Aleks855
Gjest wrote:Hei

Og sannsynligheten for at alle terningene viser FEM øyne?
$\frac{1}{6^6}$

Altså ETT gunstig utfall ut av $6^6$ mulige.