Page 1 of 1
					
				Løse enda en Diff. Likning :(
				Posted: 30/09-2017 18:22
				by iBrus
				Hei. Nok en gang står jeg fast på en text oppgave diff likning.
Har prøvd alt mulig.
Oppgaven er:
I en tank med volum 500 liter er det ved tiden t=0 oppløst 300kg salt i 300 liter vann.
Vi leder saltoppløsning med konsentrasjon 0.5 kg salt per liter ned i tanken. Innstrømmningsfarten er 10 liter per minutt.
Vi regner med at saltoppløsningen i tanken er godt blandet (perfekt blanding)
Regn ut hvor mye salt det er i tanken når den blir helt full med saltoppløsning?
Ok. Så 0.5 Kg Salg ved 10 liter per minutt gir 5Kg salt per minutt
y' = 5 -
Så står jeg her fast. Har prøvd alt mulig. Klarer ikke få det rette svaret som skal være 320kg.
Takk for all hjelp.
iBrus
			 
			
					
				Re: Løse enda en Diff. Likning :(
				Posted: 30/09-2017 19:17
				by OYV
				Har mistanke om at her mangler en opplysning . Ingenting renner ut, eller ?
			 
			
					
				Re: Løse enda en Diff. Likning :(
				Posted: 30/09-2017 19:31
				by iBrus
				OYV wrote:Har mistanke om at her mangler en opplysning . Ingenting renner ut, eller ?
Ja her er ut: 
Vi leder også saltoppløsning ut av karet. Utstrømningsfarten er 6 liter per minutt.
iBrus
 
			
					
				Re: Løse enda en Diff. Likning :(
				Posted: 30/09-2017 21:33
				by OYV
				Netto væsketilførsel per minutt: Væske inn - væske ut =  (10 - 6 ) liter = 4 liter
          Etter t minutter inneholder karet ( 300 + 4t ) liter saltvann. 
          Set at karet inneholder y kg salt etter t minutter. Da er 
          y' =  endring i saltinnhold per minutt = saltmengde som kommer inn - saltmengde som strømmer ut =  
                  5 -   [tex]\frac{6}{300 + 4t}[/tex]* y
      Denne diffligningen løses ved å multiplisere med integrerende faktor 
                       e^(det ubestemte integralet til [tex]\frac{6}{300 + 4t}[/tex] ) = [tex](50 + 2/3t)^{3/2}[/tex]
      Dette er ikke en fullstendig løsning. Men du har i det minste noe å jobbe videre med . Lukke til !
			 
			
					
				Re: Løse enda en Diff. Likning :(
				Posted: 02/10-2017 22:18
				by IBr
				I denne oppgaven må man finne integralet av 6/(300+4t).
Jeg fikk 3/2 ln(300+4t). Men matlab og dsolve, samt wolframalpha koker d ned til 3/2 ln(t+75). Dette fører til rett svar på oppgaven.
Men, jeg skjønner ikke at du kan dele ln leddet på 4 og forvente å få rett svar, for ln blir jo noe annet. Så hvorfor går dann?
			 
			
					
				Re: Løse enda en Diff. Likning :(
				Posted: 02/10-2017 23:06
				by madfro
				Hei,
Du faktoriserer utrykket inne i logaritmefunksjonen. Altså at (4t + 300) = 4(t+75).
Bruk så reglene for logaritmen av et produkt, siden integralet er ubestemt vil konstanten du drar med deg "forsvinne" inn i den ukjente.
			 
			
					
				Re: Løse enda en Diff. Likning :(
				Posted: 02/10-2017 23:14
				by OYV
				De to uttrykka 
                         3/2*ln(300 + 4t)  og 3/2* ln( 75  + t ) er like på en konstant nær (har samme derivert ).
 Det betyr at ditt uttrykk gir samme svar som Matlab.
			 
			
					
				Re: Løse enda en Diff. Likning :(
				Posted: 03/10-2017 09:18
				by OYV
				Viser til mitt forrige innlegg hvor jeg skrev at de to uttrykka 3/2* ln( 300 + 4t ) og 3/2*ln( 75 + t ) fører frem til
  samme sluttresultat. Dette holder jeg fast ved. Samtidig må jeg innrømme at det vil være hensiktsmessig å omforme 
  og  korte ned brøken før vi integrerer:
                   [tex]\frac{6}{300 + 4t}[/tex]  =  [tex]\frac{2 * 3}{2*2(75 + t )}[/tex] = [tex]\frac{3}{2(75 + t )}[/tex]
Talfaktoren i t-leddet inne i parantesen er lik 1 og da kan vi enkelt og greitt finne det ubestemte integralet:
               Integraltegn ([tex]\frac{3}{2( 75 + t )}[/tex] ) dt  = [tex]\frac{3}{2}[/tex] * ln( 75 + t ) + C
			 
			
					
				Re: Løse enda en Diff. Likning :(
				Posted: 03/10-2017 12:12
				by OYV
				Supplement til forrige innlegg:
Uttrykket [tex]\frac{3}{2}[/tex]ln( 75 + t ) forenkler i noen grad det videre regnearbeidet , men som sagt blir sluttresultatet
det samme enten vi bruker det ene eller det andre. For ordens skyld viser jeg hva som skjer i fortsettelsen hvis vi bruker 
førstnevnte uttrykk:
Integrerende faktor = e^([tex]\frac{3}{2}[/tex]ln( 75 + t ) ) = e^((ln( 75 + t )*[tex]\frac{3}{2}[/tex]) = ( 75 + t )[tex]^{3/2}[/tex]
Deretter mult. vi med integrerende faktor , og  får denne difflikninga:
                    (y * (75 + t )[tex]^{3/2}[/tex])'  = 5 * ln (75 + t )[tex]^{3/2}[/tex]
Da gjenstår å integrere opp begge sider , for deretter å løse ut y (mult. med ( 75 + t )[tex]^{-3/2}[/tex] ). 
Så bestemmes konstanten C ut fra startbetingelsen : y( 0 ) = 300