Page 1 of 1
Buelengde
Posted: 16/10-2017 09:01
by TRCD
Noen som vet hvordan jeg bør starte her?. Jeg kan formelen for buelengde, men inni den formelen skal man bruke K'(x). Bør jeg integrere F(x) først eller finnes det et triks?

- bulengde.JPG (21.35 KiB) Viewed 1677 times
Re: Buelengde
Posted: 16/10-2017 10:18
by OYV
Innfører hjelpefunksjonen
g( t ) = (9t^2 - 1)^0.5
La så G( t ) være en primitiv (antiderivert) til g. Da er
F( x ) = G ( x ) - G ( 1 )
F'( x ) = G'(x) - G'( 1 ) = g( x ) = (9 x^2 - 1 )^0.5
Sett inn dette uttrykket i formelen for buelengden og integrer fra 1 til 4. Prøv denne løsningen og se om det funker.
Re: Buelengde
Posted: 16/10-2017 10:26
by DennisChristensen
TRCD wrote:Noen som vet hvordan jeg bør starte her?. Jeg kan formelen for buelengde, men inni den formelen skal man bruke K'(x). Bør jeg integrere F(x) først eller finnes det et triks?
bulengde.JPG
Fra analysens fundamentalteorem har vi at $F'(x) = \sqrt{9x^2 - 1}$. Dermed blir buelengden $\mathcal{L}$ lik
$$\mathcal{L} = \int_1^4\sqrt{1+F'(x)^2}dx = \int_1^4\sqrt{1 + 9x^2 - 1}dx = \int_1^43xdx = 3\left[\frac12x^2\right]_1^4 = \frac32\left[16 - 1\right] = \frac{45}{2}.$$
Re: Buelengde
Posted: 18/10-2017 09:15
by TRCD
Takker
