Page 1 of 1
Eksponential derivasjon
Posted: 18/03-2018 18:29
by Guest
Hei!
Jeg sitter fast med en eksponentialfunksjon. Her skal jeg derivere;
f(x) = 1/ln2*2^x-x
Noen som kan hjelpe meg på vei med første ledd?

Re: Eksponential derivasjon
Posted: 18/03-2018 20:57
by Aleks855
Hva er første ledd? Uten parenteser er det vanskelig å tyde hvor brøken slutter.
Re: Eksponential derivasjon
Posted: 19/03-2018 08:06
by Guest
Aleks855 wrote:Hva er første ledd? Uten parenteser er det vanskelig å tyde hvor brøken slutter.
Hei beklager for litt utydelig spørsmål. I derivasjon av denne vil x på slutten bli til 1.
f(x) = (1/ln2)*( 2^x) - x
(x) = (1/ln2)*( 2^x) - 1
Her ser du hva jeg mener. Jeg sitter fast ved (1/ln2)
Riktig svar er;
f'(x) = 2^x-1
Re: Eksponential derivasjon
Posted: 19/03-2018 09:52
by Aleks855
$\frac{1}{\ln2}$ er bare en konstant som er ganga på funksjonen. Du er sikkert allerede kjent med at disse bare "blir med" og ikke deriveres.
For eksempel, hvis vi hadde hatt $f(x) = 3x^2$ så ville vi bare derivert $x^2$ og ganga det med $3$, så vi får $3\cdot 2x = 6x$.
Det samme gjelder hvis $f(x) = \frac{1}{\ln2}x^2$. Der får vi $f'(x) = \frac1{\ln2}\cdot 2x$
I ditt tilfelle, der $f(x) = \frac{1}{\ln2}2^x - x$, trenger du i første ledd bare å derivere $2^x$ og gang resultatet med $\frac{1}{\ln2}$. Neste ledd ($-x$) ser det ut som du har greid å derivere.
Re: Eksponential derivasjon
Posted: 19/03-2018 20:06
by Guest
Aleks855 wrote:$\frac{1}{\ln2}$ er bare en konstant som er ganga på funksjonen. Du er sikkert allerede kjent med at disse bare "blir med" og ikke deriveres.
For eksempel, hvis vi hadde hatt $f(x) = 3x^2$ så ville vi bare derivert $x^2$ og ganga det med $3$, så vi får $3\cdot 2x = 6x$.
Det samme gjelder hvis $f(x) = \frac{1}{\ln2}x^2$. Der får vi $f'(x) = \frac1{\ln2}\cdot 2x$
I ditt tilfelle, der $f(x) = \frac{1}{\ln2}2^x - x$, trenger du i første ledd bare å derivere $2^x$ og gang resultatet med $\frac{1}{\ln2}$. Neste ledd ($-x$) ser det ut som du har greid å derivere.
Takk så mye for svar! Som jeg forstår;
1/ln2 * 2^x deriveres slik;
(1/ln2) * (2^x*ln2) = men her skjønner jeg ikke hvorfor svaret "bare" blir 2^x i dette leddet...
Dette problemet mitt går også igjen der feks;
-1/x * x^2 blir til x-2x ...

Kan du hjelpe å forklare?
Re: Eksponential derivasjon
Posted: 19/03-2018 20:32
by Aleks855
(1/ln2) * (2^x*ln2) = men her skjønner jeg ikke hvorfor svaret "bare" blir 2^x i dette leddet
$\frac{1}{\ln2}\cdot 2^x\ln2 = \frac{2^x\ln2}{\ln2} = \frac{2^x\cancel{\ln2}}{\cancel{\ln2}} = 2^x$
Re: Eksponential derivasjon
Posted: 19/03-2018 20:35
by Guest
Aleks855 wrote:(1/ln2) * (2^x*ln2) = men her skjønner jeg ikke hvorfor svaret "bare" blir 2^x i dette leddet
$\frac{1}{\ln2}\cdot 2^x\ln2 = \frac{2^x\ln2}{\ln2} = \frac{2^x\cancel{\ln2}}{\cancel{\ln2}} = 2^x$
Noe så åpenbart! Lett å overse basic matteregler når en prøver å lære alle reglene i derivasjon...

Takk takk
Re: Eksponential derivasjon
Posted: 19/03-2018 20:39
by Aleks855
Hehe ja, det blir mer og mer å holde styr på. Men bra du øver! Jo flere ganger man ser slike ting, jo mer automatisk ser man det senere.