Er dette rett - forenkle rasjonalt uttrykk

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Er dette rett - forenkle rasjonalt uttrykk

Innlegg Halvliter » 30/06-2018 12:38

Eg lurer på om eg har funne rett svar på denne oppgåva:

[tex]\frac{x}{2}+\frac{3}{x}[/tex]

Her er mitt forslag:

[tex]\frac{x}{2}+\frac{3}{x}=\frac{x \cdot x}{2 \cdot x}+\frac{3 \cdot 2}{x \cdot 2} = \frac{x^{2}}{2x} + \frac{6}{2x} =\frac{x^{2}+6}{2x}[/tex]

--

Eg blir glad dersom du ikkje skriver inn svaret, men forteller meg om det er riktig eller galt.
Sist endret av Halvliter den 30/06-2018 15:31, endret 1 gang
Halvliter offline
Noether
Noether
Innlegg: 20
Registrert: 25/06-2018 12:45

Re: Er dette rett - forenkle nasjonalt uttrykk

Innlegg Markus » 30/06-2018 12:48

Det ser helt korrekt ut!
Markus offline
Weierstrass
Weierstrass
Innlegg: 486
Registrert: 20/09-2016 12:48

Re: Er dette rett - forenkle nasjonalt uttrykk

Innlegg Halvliter » 30/06-2018 13:02

Supert!

Eg var veldig i tvil om det gjekk an å forkorte brøken meir dersom eg faktoriserte:

[tex]\frac{x\cdot x+6}{2\cdot x} = \frac{x+6}{2}[/tex]
Halvliter offline
Noether
Noether
Innlegg: 20
Registrert: 25/06-2018 12:45

Re: Er dette rett - forenkle nasjonalt uttrykk

Innlegg Markus » 30/06-2018 13:07

Halvliter skrev:Supert!

Eg var veldig i tvil om det gjekk an å forkorte brøken meir dersom eg faktoriserte:

[tex]\frac{x\cdot x+6}{2\cdot x} = \frac{x+6}{2}[/tex]

Det der er ikke en gyldig faktorisering, fordi $x$ er ikke en faktor i $6$, derfor er $x\cdot x + 6 \neq x\cdot x + 6x = x(x+6)$
Markus offline
Weierstrass
Weierstrass
Innlegg: 486
Registrert: 20/09-2016 12:48

Re: Er dette rett - forenkle nasjonalt uttrykk

Innlegg Halvliter » 30/06-2018 15:30

Eg ser at eg trenger å jobbe med riktig faktorisering når eg skal forkorte brøker!

Her er to oppgåver til eg kunne trengt hjelp til:

Oppgåve 1:

[tex]\frac{x^3+2x^2+x}{2x^2+4x+2}= \frac{x \cdot x \cdot x \cdot +2 \cdot x \cdot x +x}{2 \cdot x \cdot x +4 \cdot x +2}= \frac{\cancel x \cdot \cancel x \cdot \cancel x \cdot +\cancel 2 \cdot x \cdot x +x}{\cancel2 \cdot \cancel x \cdot \cancel x +4 \cdot \cancel x +2}= \frac{x^2+x}{6}[/tex]


Oppgåve 2:

[tex]\frac{\left ( x-2 \right )^2 - \left ( 2x-1 \right )^2}{x^2-1}= \frac{x^2-2^2-\left ( 2^2 \cdot x^2-1^2 \right )}{x^2-1}= \frac{x^2-4-4-x^2+1}{x^2-1}= \frac{x \cdot x -7 - x \cdot x}{x \cdot x - 1} = \frac{\cancel x \cdot \cancel x -7 - x \cdot x}{\cancel x \cdot \cancel x - 1} = \frac{-7-x^2}{-1}[/tex]
Halvliter offline
Noether
Noether
Innlegg: 20
Registrert: 25/06-2018 12:45

Re: Er dette rett - forenkle nasjonalt uttrykk

Innlegg Markus » 30/06-2018 15:48

Halvliter skrev:Eg ser at eg trenger å jobbe med riktig faktorisering når eg skal forkorte brøker!

Her er to oppgåver til eg kunne trengt hjelp til:

Oppgåve 1:

[tex]\frac{x^3+2x^2+x}{2x^2+4x+2}= \frac{x \cdot x \cdot x \cdot +2 \cdot x \cdot x +x}{2 \cdot x \cdot x +4 \cdot x +2}= \frac{\cancel x \cdot \cancel x \cdot \cancel x \cdot +\cancel 2 \cdot x \cdot x +x}{\cancel2 \cdot \cancel x \cdot \cancel x +4 \cdot \cancel x +2}= \frac{x^2+x}{6}[/tex]


Oppgåve 2:

[tex]\frac{\left ( x-2 \right )^2 - \left ( 2x-1 \right )^2}{x^2-1}= \frac{x^2-2^2-\left ( 2^2 \cdot x^2-1^2 \right )}{x^2-1}= \frac{x^2-4-4-x^2+1}{x^2-1}= \frac{x \cdot x -7 - x \cdot x}{x \cdot x - 1} = \frac{\cancel x \cdot \cancel x -7 - x \cdot x}{\cancel x \cdot \cancel x - 1} = \frac{-7-x^2}{-1}[/tex]


Jeg ville anbefalt deg å se på denne videoen om faktorisering: https://udl.no/v/matematikk-blandet/algebra/faktorisering-1-forkurs-146. Du kan ikke stryke helt vilkårlig som du gjør over her. Du må finne en felles faktor for alle leddene. Se på videoen(e), prøv å løs oppgavene over på nytt. Gjerne spør om mer, men jeg tror det er smart å få inn det grunnleggende først, hvilket blir veldig godt forklart i videoene! På første oppgave er imidlertid trikset å bruke abc-formelen. Hvis det ikke sier deg noe, se video fra samme kanal om det også! På oppgave 2 har du skrevet ut parantesen feil; $(x-2)^2=x^2-4x+4\neq x^2 - 2^2$
Markus offline
Weierstrass
Weierstrass
Innlegg: 486
Registrert: 20/09-2016 12:48

Re: Er dette rett - forenkle rasjonalt uttrykk

Innlegg Halvliter » 01/07-2018 14:27

Den videoen var til veldig hjelp, tusen takk!

Eg såg eg hadde løyst opp parantesen feil, takk skal du ha!

Har prøvd meg igjen på oppgåvene og har fått svara:

Oppgåve 1

[tex]\frac{x}{2}[/tex]

Oppgåve 2

[tex]\frac{3\left ( -x^2+1 \right )} {x^2-1}[/tex]
Halvliter offline
Noether
Noether
Innlegg: 20
Registrert: 25/06-2018 12:45

Re: Er dette rett - forenkle rasjonalt uttrykk

Innlegg Markus » 01/07-2018 21:38

Halvliter skrev:Den videoen var til veldig hjelp, tusen takk!

Eg såg eg hadde løyst opp parantesen feil, takk skal du ha!

Har prøvd meg igjen på oppgåvene og har fått svara:

Oppgåve 1

[tex]\frac{x}{2}[/tex]

Oppgåve 2

[tex]\frac{3\left ( -x^2+1 \right )} {x^2-1}[/tex]


Dette er helt korrekt - kjempe! Du kan for øvrig forkorte enda mer i oppgave 2, og forenkle uttrykket enda mer.

$$\frac{3(-x^2+1)}{x^2-1} = \frac{3(-1(x^2-1))}{x^2-1} = \frac{3 \cdot (-1 \cancel{(x^2-1)})}{\cancel{x^2-1}} = -3$$
Markus offline
Weierstrass
Weierstrass
Innlegg: 486
Registrert: 20/09-2016 12:48

Re: Er dette rett - forenkle rasjonalt uttrykk

Innlegg Halvliter » 02/07-2018 07:29

Tusen takk skal du ha!
Halvliter offline
Noether
Noether
Innlegg: 20
Registrert: 25/06-2018 12:45

Hvem er i forumet

Brukere som leser i dette forumet: Google [Bot] og 23 gjester