Separabel førsteordens difflikning

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Separabel førsteordens difflikning

Innlegg Kwerty » 20/11-2018 12:18

Hei,

sliter med denne her:

[tex]\frac{dy}{dx} +x^2y = x^2[/tex]
Omskriver til [tex]\frac{dy}{dx} = x^2(1-y)[/tex] som blir [tex]\frac{dy}{1-y} = x^2dx[/tex]. Integrerer på begge sider: [tex]-ln(1-y) = \frac{x^3}{3}+C[/tex]. Men denne greier jeg ikke løse (ender opp med ln av negativt tall) Hva har jeg gjort feil?
Kwerty offline
Noether
Noether
Innlegg: 36
Registrert: 14/11-2018 18:30

Re: Separabel førsteordens difflikning

Innlegg Aleks855 » 20/11-2018 13:12

Hint: $\int \frac 1y \mathrm dy = \ln|y| + C$. Ser du forskjellen og hva den utgjør for problemet ditt?
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5479
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Separabel førsteordens difflikning

Innlegg Kwerty » 20/11-2018 15:13

Kommer egentlig ikke noe videre av det, nei!
Kwerty offline
Noether
Noether
Innlegg: 36
Registrert: 14/11-2018 18:30

Re: Separabel førsteordens difflikning

Innlegg Janhaa » 20/11-2018 16:37

Kwerty skrev:Kommer egentlig ikke noe videre av det, nei!

[tex](\ln(1-y))' = \frac{-1}{1-y}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7579
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: Separabel førsteordens difflikning

Innlegg Kwerty » 20/11-2018 16:40

Hva hjelper det meg? Usikker på hvordan jeg skal behandle absoluttverditegnet her.
Kwerty offline
Noether
Noether
Innlegg: 36
Registrert: 14/11-2018 18:30

Re: Separabel førsteordens difflikning

Innlegg Janhaa » 20/11-2018 16:47

Kwerty skrev:Hva hjelper det meg? Usikker på hvordan jeg skal behandle absoluttverditegnet her.


[tex]exp(\ln(1-y)) = c' *exp(-x^3/3)[/tex]

[tex]1-y = c' *exp(-x^3/3)[/tex]

etc...
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7579
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: Separabel førsteordens difflikning

Innlegg Kwerty » 20/11-2018 16:55

Skjønner det, men når jeg prøver å løse den ender jeg opp med ln av et negativt tall!
Kwerty offline
Noether
Noether
Innlegg: 36
Registrert: 14/11-2018 18:30

Re: Separabel førsteordens difflikning

Innlegg ErikAndre » 05/12-2018 23:56

Kwerty skrev:Skjønner det, men når jeg prøver å løse den ender jeg opp med ln av et negativt tall!


Du kan definere absoluttverdien av et tall [tex]a[/tex] som følger:

[tex]|a| = \begin{cases} a & \text{om } a \geq 0, \\ -a & \text{ellers}.\end{cases}[/tex]

Ser du nå hvordan dette hjelper på problemet ditt?
ErikAndre offline
Cayley
Cayley
Innlegg: 76
Registrert: 15/02-2016 20:21

Re: Separabel førsteordens difflikning

Innlegg Kwerty » 06/12-2018 11:03

Er klar over det, men sliter med å få brukt det i praksis for en slik difflikning. Slik jeg gjør det nå, når jeg har et ln-uttrykk, er å sette konstantleddet lik +/-, og da fjerne absoluttversditegnet rundt det som tidligere var inne i ln-uttrykket. Men finnes nok en bedre metode? Er slik LF pleier å gjøre det.
Kwerty offline
Noether
Noether
Innlegg: 36
Registrert: 14/11-2018 18:30

Re: Separabel førsteordens difflikning

Innlegg ErikAndre » 06/12-2018 11:44

Det høres ut som om du bare bruker definisjonen av absoluttverdi? Det må du jo nesten gjøre om du skal komme deg videre. Si at du f.eks. skal regne ut
[tex]I = \int_{0}^{1} \frac{1}{x-2} \mathop{\mathrm{d}x}[/tex].
Da kommer vi frem til at
[tex]I = \ln{|1-2|} - \ln{|-2|} = \ln{1} - \ln{2} = - \ln{2}[/tex].
ErikAndre offline
Cayley
Cayley
Innlegg: 76
Registrert: 15/02-2016 20:21

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 15 gjester