Lengde av vektor - logisk brist

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Lengde av vektor - logisk brist

Innlegg hamilton » 21/03-2019 15:50

Vi vet at

[tex]\vec{a}^2=|\vec{a}|^2[/tex]

Men det ikke slik at

[tex]\sqrt{\vec{a}^2}=\sqrt{|\vec{a}|^2}[/tex], som gir [tex]\vec{a}=|\vec{a}|[/tex]

Hvorfor?
hamilton offline
Pytagoras
Pytagoras
Innlegg: 16
Registrert: 24/09-2012 20:05

Re: Lengde av vektor - logisk brist

Innlegg Markus » 21/03-2019 21:03

Dette er ikke noen logisk brist, tvert om. Notasjonen $\overrightarrow{a}^2$ er egentlig bare en kjappere måte å skrive dotproduktet på: $\overrightarrow{a}^2 \stackrel{\text{def}}{=} \overrightarrow{a} \cdot \overrightarrow{a}$. Husk på at dotproduktet gir en skalar, ikke en vektor.

Hvis vi for eksempel har en 2D-vektor, $\overrightarrow{a}=(x,y)$, så er lengden til denne $|\overrightarrow{a}|=\sqrt{x^2+y^2}$. Dotproduktet er $$\overrightarrow{a}^2 = \overrightarrow{a} \cdot \overrightarrow{a} = x\cdot x + y \cdot y = x^2+y^2$$så $\sqrt{\overrightarrow{a}^2} = \sqrt{x^2+y^2}=|\overrightarrow{a}|$. Dermed får vi den regelen du nevner: $\overrightarrow{a}^2=|\overrightarrow{a}|^2$.
Markus offline
Fermat
Fermat
Innlegg: 716
Registrert: 20/09-2016 12:48
Bosted: NTNU

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 19 gjester

cron